Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, we shall establish sufficient conditions for the existence of solutions for a class of boundary value problem for fractional differential equations involving the Caputo fractional derivative and nonlinear integral conditions.
Wydawca
Czasopismo
Rocznik
Tom
Strony
147--159
Opis fizyczny
Bibliogr. 37 poz.
Twórcy
autor
autor
- Laboratoire de Mathématiques, Université de Sidi Bel-Abbes, B.P. 89, 22000, Sidi Bel-Abbes, Algérie, benchohra@univ-sba.dz
Bibliografia
- [1] G. Adomian and G.E. Adomian, Cellular systems and aging models, Comput. Math. Appl. 11 (1985) 283-291.
- [2] A. Belarbi, M. Benchohra and B.C. Dhage, Existence theory for perturbed boundary value problems with integral boundary conditions, Georgian Math. J., 13 (2) (2006), 215-228.
- [3] A. Belarbi, M. Benchohra, S. Hamani and S.K. Ntouyas, Perturbed functional differential equations with fractional order, Commun. Appl. Anal. 11 (3-4) (2007), 429-440.
- [4] A. Belarbi, M. Benchohra and A. Ouahab, Uniqueness results for fractional functional differential equations with infinite delay in Fréchet spaces, Appl. Anal. 85 (2006), 1459-1470.
- [5] M. Benchohra, S. Hamani, and J. Henderson, Functional differential inclusions with integral boundary conditions , Electr. J. Qual. Theo. Differential Equations, No. 15 (2007), 1-13.
- [6] M. Benchohra, S. Hamani and J.J. Nieto, The method of upper and lower solutions for second order differential inclusions with integral boundary conditions , Rocky Mountain J. Math. (to appear).
- [7] M. Benchohra, J. Henderson, S.K. Ntouyas and A. Ouahab, Existence results for fractional order functional differential equations with infinite delay, J. Math. Anal. Appl. 338 (2) (2008), 1340-1350.
- [8] K.W. Blayneh, Analysis of age structured host-parasitoid model, Far East J. Dyn. Syst. 4 (2002), 125-145.
- [9] D. Delbosco and L. Rodino, Existence and uniqueness for a nonlinear fractional differential equation, J. Math. Anal. Appl. 204 (1996), 609-625.
- [10] K. Diethelm and A.D. Freed, On the solution of nonlinear fractional order differential equations used in the modeling of viscoplasticity, in "Scientifice Computing in Chemical Engineering II-Computational Fluid Dynamics, Reaction Engineering and Molecular Properties" (F. Keil, W. Mackens, H. Voss, and J.Werther, Eds), pp 217-224, Springer-Verlag, Heidelberg, 1999.
- [11] K. Diethelm and N. J. Ford, Analysis of fractional differential equations, J. Math. Anal. Appl. 265 (2002), 229-248.
- [12] K. Diethelm and G. Walz, Numerical solution of fractional order differential equations by extrapolation, Numer. Algorithms 16 (1997), 231-253.
- [13] A. M. A. El-Sayed, Fractional order evolution equations, J. Fract. Calc. 7 (1995), 89-100.
- [14] A. M. A. El-Sayed, Fractional order diffusion-wave equations, Intern. J. Theo. Physics 35 (1996), 311-322.
- [15] A. M. A. El-Sayed, Nonlinear functional differential equations of arbitrary orders, Nonlinear Anal. 33 (1998), 181-186.
- [16] L. Gaul, P. Klein and S. Kempfle, Damping description involving fractional operators, Mech. Systems Signal Processing 5 (1991), 81-88.
- [17] W. G. Glockle and T. F. Nonnenmacher, A fractional calculus approach of self-similar protein dynamics, Biophys. J. 68 (1995), 46-53.
- [18] A. Granas and J. Dugundji, Fixed Point Theory, Springer-Verlag, New York, 2003.
- [19] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.
- [20] E.R. Kaufmann and E. Mboumi, Positive solutions of a boundary value problem for a nonlinear fractional differential equation , Electron. J. Qual. Theory Differ. Equ. 2007, No. 3,pp 11.
- [21] A. A. Kilbas and S. A. Marzan, Nonlinear differential equations with the Caputo fractional derivative in the space of continuously differentiable functions, Differential Equations 41 (2005), 84-89.
- [22] A.A. Kilbas, Hari M. Srivastava, and Juan J. Trujillo, Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam, 2006.
- [23] V. Lakshmikantham, and A.S. Vatsala, Basic theory of fractional differential equations, Nonlinear Anal. 69 (2008), 2677-2682.
- [24] V. Lakshmikantham, and A.S. Vatsala, Theory of fractional differential inequalities and applications, Commun. Appl. Anal. 11, No. 3-4 (2007), 395-402.
- [25] V. Lakshmikantham and A.S. Vatsala, General uniqueness and monotone iterative technique for fractional differential equations, Appl. Math. Lett., 21 (2008) 828-834.
- [26] F. Mainardi, Fractional calculus: Some basic problems in continuum and statistical mechanics, in "Fractals and Fractional Calculus in Continuum Mechanics" (A. Carpinteri and F. Mainardi, Eds), pp. 291-348, Springer-Verlag, Wien, 1997.
- [27] F. Metzler, W. Schick, H. G. Kilian and T. F. Nonnenmacher, Relaxation in filled polymers: A fractional calculus approach, J. Chem. Phys. 103 (1995), 7180-7186.
- [28] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Differential Equations, John Wiley, New York, 1993.
- [29] S. M. Momani and S. B. Hadid, Some comparison results for integro-fractional differential inequalities, J. Fract. Calc. 24 (2003), 37-44.
- [30] S. M. Momani, S. B. Hadid and Z. M. Alawenh, Some analytical properties of solutions of differential equations of noninteger order, Int. J. Math. Math. Sci. 2004 (2004), 697-701.
- [31] K.B. Oldham and J. Spanier, The Fractional Calculus, Academic Press, New York, London, 1974.
- [32] I. Podlubny, Fractional Differential Equation, Academic Press, San Diego, 1999.
- [33] I. Podlubny, Geometric and physical interpretation of fractional integration and fractional differentiation, Fract. Calculus Appl. Anal. 5 (2002), 367-386.
- [34] I. Podlubny, I. Petraˇs, B. M. Vinagre, P. O'Leary and L. Dorˇcak, Analogue realizations of fractional-order controllers. Fractional order calculus and its applications, Nonlinear Dynam. 29 (2002), 281-296.
- [35] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach, Yverdon, 1993.
- [36] C. Yu and G. Gao, Existence of fractional differential equations, J. Math. Anal. Appl. 310 (2005), 26-29.
- [37] S. Zhang, Positive solutions for boundary-value problems of nonlinear fractional diffrential equations, Electron. J. Differential Equations 2006, No. 36, 1-12.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0011-0069