PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Boundary Value Problems for Differential Equations with Fractional Order and Nonlinear Integral Conditions

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we shall establish sufficient conditions for the existence of solutions for a class of boundary value problem for fractional differential equations involving the Caputo fractional derivative and nonlinear integral conditions.
Rocznik
Strony
147--159
Opis fizyczny
Bibliogr. 37 poz.
Twórcy
autor
autor
  • Laboratoire de Mathématiques, Université de Sidi Bel-Abbes, B.P. 89, 22000, Sidi Bel-Abbes, Algérie, benchohra@univ-sba.dz
Bibliografia
  • [1] G. Adomian and G.E. Adomian, Cellular systems and aging models, Comput. Math. Appl. 11 (1985) 283-291.
  • [2] A. Belarbi, M. Benchohra and B.C. Dhage, Existence theory for perturbed boundary value problems with integral boundary conditions, Georgian Math. J., 13 (2) (2006), 215-228.
  • [3] A. Belarbi, M. Benchohra, S. Hamani and S.K. Ntouyas, Perturbed functional differential equations with fractional order, Commun. Appl. Anal. 11 (3-4) (2007), 429-440.
  • [4] A. Belarbi, M. Benchohra and A. Ouahab, Uniqueness results for fractional functional differential equations with infinite delay in Fréchet spaces, Appl. Anal. 85 (2006), 1459-1470.
  • [5] M. Benchohra, S. Hamani, and J. Henderson, Functional differential inclusions with integral boundary conditions , Electr. J. Qual. Theo. Differential Equations, No. 15 (2007), 1-13.
  • [6] M. Benchohra, S. Hamani and J.J. Nieto, The method of upper and lower solutions for second order differential inclusions with integral boundary conditions , Rocky Mountain J. Math. (to appear).
  • [7] M. Benchohra, J. Henderson, S.K. Ntouyas and A. Ouahab, Existence results for fractional order functional differential equations with infinite delay, J. Math. Anal. Appl. 338 (2) (2008), 1340-1350.
  • [8] K.W. Blayneh, Analysis of age structured host-parasitoid model, Far East J. Dyn. Syst. 4 (2002), 125-145.
  • [9] D. Delbosco and L. Rodino, Existence and uniqueness for a nonlinear fractional differential equation, J. Math. Anal. Appl. 204 (1996), 609-625.
  • [10] K. Diethelm and A.D. Freed, On the solution of nonlinear fractional order differential equations used in the modeling of viscoplasticity, in "Scientifice Computing in Chemical Engineering II-Computational Fluid Dynamics, Reaction Engineering and Molecular Properties" (F. Keil, W. Mackens, H. Voss, and J.Werther, Eds), pp 217-224, Springer-Verlag, Heidelberg, 1999.
  • [11] K. Diethelm and N. J. Ford, Analysis of fractional differential equations, J. Math. Anal. Appl. 265 (2002), 229-248.
  • [12] K. Diethelm and G. Walz, Numerical solution of fractional order differential equations by extrapolation, Numer. Algorithms 16 (1997), 231-253.
  • [13] A. M. A. El-Sayed, Fractional order evolution equations, J. Fract. Calc. 7 (1995), 89-100.
  • [14] A. M. A. El-Sayed, Fractional order diffusion-wave equations, Intern. J. Theo. Physics 35 (1996), 311-322.
  • [15] A. M. A. El-Sayed, Nonlinear functional differential equations of arbitrary orders, Nonlinear Anal. 33 (1998), 181-186.
  • [16] L. Gaul, P. Klein and S. Kempfle, Damping description involving fractional operators, Mech. Systems Signal Processing 5 (1991), 81-88.
  • [17] W. G. Glockle and T. F. Nonnenmacher, A fractional calculus approach of self-similar protein dynamics, Biophys. J. 68 (1995), 46-53.
  • [18] A. Granas and J. Dugundji, Fixed Point Theory, Springer-Verlag, New York, 2003.
  • [19] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.
  • [20] E.R. Kaufmann and E. Mboumi, Positive solutions of a boundary value problem for a nonlinear fractional differential equation , Electron. J. Qual. Theory Differ. Equ. 2007, No. 3,pp 11.
  • [21] A. A. Kilbas and S. A. Marzan, Nonlinear differential equations with the Caputo fractional derivative in the space of continuously differentiable functions, Differential Equations 41 (2005), 84-89.
  • [22] A.A. Kilbas, Hari M. Srivastava, and Juan J. Trujillo, Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam, 2006.
  • [23] V. Lakshmikantham, and A.S. Vatsala, Basic theory of fractional differential equations, Nonlinear Anal. 69 (2008), 2677-2682.
  • [24] V. Lakshmikantham, and A.S. Vatsala, Theory of fractional differential inequalities and applications, Commun. Appl. Anal. 11, No. 3-4 (2007), 395-402.
  • [25] V. Lakshmikantham and A.S. Vatsala, General uniqueness and monotone iterative technique for fractional differential equations, Appl. Math. Lett., 21 (2008) 828-834.
  • [26] F. Mainardi, Fractional calculus: Some basic problems in continuum and statistical mechanics, in "Fractals and Fractional Calculus in Continuum Mechanics" (A. Carpinteri and F. Mainardi, Eds), pp. 291-348, Springer-Verlag, Wien, 1997.
  • [27] F. Metzler, W. Schick, H. G. Kilian and T. F. Nonnenmacher, Relaxation in filled polymers: A fractional calculus approach, J. Chem. Phys. 103 (1995), 7180-7186.
  • [28] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Differential Equations, John Wiley, New York, 1993.
  • [29] S. M. Momani and S. B. Hadid, Some comparison results for integro-fractional differential inequalities, J. Fract. Calc. 24 (2003), 37-44.
  • [30] S. M. Momani, S. B. Hadid and Z. M. Alawenh, Some analytical properties of solutions of differential equations of noninteger order, Int. J. Math. Math. Sci. 2004 (2004), 697-701.
  • [31] K.B. Oldham and J. Spanier, The Fractional Calculus, Academic Press, New York, London, 1974.
  • [32] I. Podlubny, Fractional Differential Equation, Academic Press, San Diego, 1999.
  • [33] I. Podlubny, Geometric and physical interpretation of fractional integration and fractional differentiation, Fract. Calculus Appl. Anal. 5 (2002), 367-386.
  • [34] I. Podlubny, I. Petraˇs, B. M. Vinagre, P. O'Leary and L. Dorˇcak, Analogue realizations of fractional-order controllers. Fractional order calculus and its applications, Nonlinear Dynam. 29 (2002), 281-296.
  • [35] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach, Yverdon, 1993.
  • [36] C. Yu and G. Gao, Existence of fractional differential equations, J. Math. Anal. Appl. 310 (2005), 26-29.
  • [37] S. Zhang, Positive solutions for boundary-value problems of nonlinear fractional diffrential equations, Electron. J. Differential Equations 2006, No. 36, 1-12.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0011-0069
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.