PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Some properties of four topologies in real linear spaces and three classes related to them

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the paper there are invesigated the core topology, τ_1, the directional topology, τ_2, the Klee topology, τ_3, and the finite topology, τ_0, as well as the generalizations τ1(n), τ2(n) and τ3(n) of τ1, τ2 and τ3, respectively. These generalizations are obtained when in the definition of a given topology the condition concerning straight lines is replaced by the analogous condition concerning linear varieties of dimension n, where n ∈ N. There are stated the inclusions between these topologies, the characterization with the respect to separation axioms. There are answered the questions: when considered topological spaces are Baire, sequential and Frechet? There are formulated criteria for the compactness and sequentially compactness of sets, for the convergence of sequences. There is stated the characterization of curves. Till now these problems were undertaken only in particular cases and for some topologies τ1, τ2, τ3 and τ0. For all considered topologies as well as for a certain class (including linear topologies) there are characterized the components of open sets; it is shown that every such component is the arcwise connected component and the quasi-component. In the paper there is also discussed the problem: what is it obtained when in the definition of the topology τ2(n) instead of R there is an other topological space?
Rocznik
Strony
107--137
Opis fizyczny
Bibliogr. 31 poz.
Twórcy
autor
autor
Bibliografia
  • [1] Cz. Bessaga and A. Peczyński, Select topics in infinite-dimensional topology, PWN Warsaw 1975.
  • [2] L. Drewnowski, Resolutions of topological linear spaces and continuity of linear maps, J. Math. Anal. Appl. 335 (2007), 1177-1194.
  • [3] R. E. Edwards, Functional analysis, Mir Moskva 1969 (in Russian).
  • [4] R. Engelking, General topology, PWN Warsaw 1977.
  • [5] M. Henriksen and R. G. Woods, Seperate versus joint continuity: A tale of four topologies, Topology and its Appl. 97 (1999), 175-205.
  • [6] G. Horbaczewska, Core density topologies, Real Analysis Exchange, Vol. 20(2), 1994/5, p.416-417.
  • [7] G. Horbaczewska, Some modifications of the core topology on the plane, Real Analysis Exchange, Vol. 24(1) (1998/9), 185-204.
  • [8] L. Jankowski, Some properties of the core topologies, Comm. Math. XIX (1977), 239-247.
  • [9] L. Jankowski and A. Marlewski, A note on the core topology and three other ones, Fasciculi Mathematici No. 36 (2005), 49-63.
  • [10] L. Jankowski and A. Marlewski, Four topologies examined by some cardinal functions Mathematica Pannonica No. 19/2 (2008), p.261-290.
  • [11] S. Kakutani, Klee, V., The finite topology of a linear space, Arch.Math. 14 (1963), 55-58.
  • [12] V.L. Klee, Convex sets in linear spaces, Duke Math. J. 18 (1951), 444-466.
  • [13] V.L. Klee, Convex sets in linear spaces, III, Duke Math. J. 20 (1953), 105-112.
  • [14] V.L. Klee, Some finite dimensional affine topological spaces, Portugaliae Math. 14 (1955), 27-30.
  • [15] J. Klose, A note on the core topology used in optimization, Optimization, 1992, Vol. 23, 27-40.
  • [16] G. Köthe, Topological vector space I, Springer, Berlin 1969.
  • [17] C. A. Kottman" A characterization of the Euclidean topology among the affine topologies, Israel J. Math. 10 (1971), 212-217.
  • [18] A. Kucharski and S. Plewik, Cardinal invariants for C-cross topologies, Note di Matematica 27, supl.n. 1 (2007), 97-106.
  • [19] M. Kuczma, A note on the core topology, Annales Math. Silesianae, T.5, (1991), 28-36.
  • [20] P. Lelong, Topologies semi-vectorielles. Application à l'analyse complexe, Annales de l'Institut Fourier, tome 25, no. 3-4 (1975), 381-407.
  • [21] R. J. Pawlak, The almost continuity of a function of two variables with respect to its sections and core-topology, Atti Sem. Mat. Fis. Univ. Modena, XLVI (1986), 457-468.
  • [22] D. A. Raikov, On B-complete topological vector groups, Studis Math. 31 (1968), 295-305 (in Russian).
  • [23] R. T. Rockafellar, Convex analysis, Mir Moskva 1973 (in Russian).
  • [24] H. Schaefer, Topological vector spaces, Springer-Verlag, New York Berlin Heidelberg Second Edition 1999.
  • [25] T. Świątkowski, Some properties of cross- and core-topologies on R2, Zesz. Nauk. Polit. Łódzkiej, Matematyka, z. 25 (1993), 77-81.
  • [26] F. A. Valentine, Convex sets, McGraw-Hill, New York 1964.
  • [27] E. Wagner-Bojakowska and W. Wilczyński, Approximate core topologies, Real Analysis Exchange, Vol. 20(1) (1994/5), 192-203.
  • [28] E. Wagner-Bojakowska and W. Wilczyński, Approximate core-a.e. topology, Zesz. Nauk. Polit. Łódzkiej, Matematyka, z. 27 (1995), 129-138.
  • [29] E. Wagner-Bojakowska and W. Wilczyński, Separation axioms for some modifications of the core topology, Atti Sem. Mat. Fis. Univ. Modena XLVI (1998), 361-370.
  • [30] I. B. Yaroshevskaya, An example of a quasi-vector topology on R1 other than the usual topology, Vestnik Moskovskoga Universiteta, no. 2 (1975), 35-40 (in Russian).
  • [31] I. B. Yaroshevskaya, On the minimal topology in the class of topological vector groups on R1, Communications of the Moscow Math. Society, no. 36 (1981), 205-206.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0011-0067
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.