Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Classical solutions of nonlinear second-order partial dierential functional equations of parabolic type with Neumann's condition are approximated in the paper by solutions of associated explicit dierence functional equations. The functional dependence is of the Volterra type. Nonlinear estimates of the generalized Perron type for given functions are assumed. The convergence and stability results are proved with the use of the comparison technique. These theorems in particular cover quasi-linear equations, but such equations are also treated separately. The known results on similar dierence methods can be obtained as particular cases of our simple result.
Wydawca
Czasopismo
Rocznik
Tom
Strony
83--106
Opis fizyczny
Bibliogr. 29 poz., tab.
Twórcy
autor
- Faculty of Applied Mathematics AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland, lusapa@mat.agh.edu.pl
Bibliografia
- [1] P. Besala and G. Paszek, Differential-functional inequalities of parabolic type in unbounded regions, Ann. Polon. Math. 38 (1980), 217-228.
- [2] P. Besala and G. Paszek, On the uniqueness of solutions to a parabolic system of differential-functional equations, Demonstratio Math. 18 (1985), 1-16.
- [3] S. Brzychczy, Existence and uniqueness of solutions of infinite systems of semilinear parabolic differential-functional equations in arbitrary domains in ordered Banach spaces, Math. Comput. Modelling 36 (2002), 1183-1192.
- [4] S. Brzychczy, Monotone iterative methods for infnite systems of reaction-diffusion-convection equations with functional dependence, Opuscula Math. 25 (2005), 29-99.
- [5] R. Ciarski, Numerical approximations of parabolic differential functional equations with the initial boundary conditions of the Neumann type, Ann. Polon. Math. 84 (2004), 103-119.
- [6] J. Hale and L. Verdyun, Introduction to Functional Differential Equations, Springer, New York 1993.
- [7] Z. Kamont and M. Kwapisz, Difference methods for nonlinear parabolic differential-functional systems with initial boundary conditions of the Neumann type, Comment. Math. Prace Mat. 28 (1989), 223-248.
- [8] Z. Kamont, H. Leszczyński, Stability of difference equations generated by parabolic differential-functional problems, Rend. Mat. Appl. 16(7) (1996), 265-287.
- [9] Z. Kamont, Hyperbolic Functional Differential Inequalities and Applications, Kluwer, Dordrecht-Boston-London 1999.
- [10] Z. Kamont, Numerical approximations of difference functional equations and applications, Opuscula Math. 25 (2005), 109-130.
- [11] Z. Kowalski, A difference method for a non-linear system of elliptic equations with mixed derivatives, Ann. Polon. Math. 38 (1980), 229-243.
- [12] K. Kropielnicka, Difference methods for parabolic functional differential problems of the Neumann type, Ann. Polon. Math. 92 (2007), 163-178.
- [13] M. Malec, Sur une famille biparamétrique de schémas des différences finies pour un systéme d'équations paraboliques aux dérivées mixtes et avec des conditions aux limites du type de Neumann, Ann. Polon. Math. 32 (1976), 33-42.
- [14] M. Malec, Sur une méthode des diérences finies pour une équation non linéaire différentielle fonctionnelle aux dérivées mixtes, Ann. Polon. Math. 36 (1979), 1-10.
- [15] M. Malec, Cz. Mączka and W. Voigt, Weak diérence-functional inequalities and their application to the différence analogue of non-linear parabolic différential-functional equations, Numer. Math. 11 (1983), 69-79.
- [16] M. Malec and M. Rosati, A convergent scheme for non-linear systems of dfférential functional equations of parabolic type, Rend. Mat. Appl. 3(7) (1983), 211-227.
- [17] M. Malec and L. Sapa, A finite différence method for nonlinear parabolic-elliptic systems of second order partial différential equations, Opuscula Math. 27 (2007), 259-289.
- [18] R. Mosurski, Différence method for an elliptic system of non-linear différential-functional equations, Univ. Iagel. Acta Math. 43 (2005), 181-199.
- [19] C.V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York-London 1992.
- [20] C.V. Pao, Coupled nonlinear parabolic systems with time delays, Journ. Math. Anal. Appl. 196 (1995), 237-265.
- [21] C.V. Pao, Systems of parabolic equations with continuous and discrete delays, Journ. Math. Anal. Appl. 205 (1997), 157-185.
- [22] C.V. Pao, Finite différence reaction-diffusion systems with coupled boundary conditions and time delays, J. Math. Anal. Appl. 272 (2002), 407-434.
- [23] R. Redheér and W. Walter, Comparison theorems for parabolic functional inequalities, Pacific J. Math. 85 (1979), 447-470.
- [24] L. Sapa, A finite différence method for quasi-linear and nonlinear différential functional parabolic equations with Dirichlet's condition, Ann. Polon. Math. 93 (2008), 113-133.
- [25] J. Szarski, Différential Inequalities, Monograf. Mat. 43, PWN - Polish Sci. Publ., Warszawa 1967.
- [26] J. Szarski, Uniqueness of solutions of a mixed problem for parabolic différential-functional equations, Ann. Polon. Math. 28 (1973), 57-65.
- [27] J. Szarski, Strong maximum principle for non-linear parabolic différential-functional inequalities in arbitrary domains, Ann. Polon. Math. 31 (1975), 197-203.
- [28] W. Walter, Différential and Integral Inequalities, Monograph, Springer, Berlin 1970.
- [29] J. Wu, Theory and Applications of Partial Functional Différential Equations, Springer, New York 1996.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0011-0066