PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Voronovskaya-Type Theorems for Derivatives of the Bernstein-Chlodovsky Polynomials and the Szasz-Mirakyan Operator

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper is devoted to a study of a Voronovskaya-type theorem for the derivative of the Bernstein-Chlodovsky polynomials and to a comparison of its approximation eectiveness with the corresponding theorem for the much better-known Szasz-Mirakyan operator. Since the Chlodovsky polynomials contain a factor bn tending to innity having a certain degree of freedom, these polynomials turn out to be generally more ecient in approximating the derivative of the associated function than does the Szasz operator. Moreover, whereas Chlodovsky polynomials apply to functions which are even of order O(exp(x^p)) for any p ≥ 1; the Szasz-Mirakyan operator does so only for p = 1; it diverges for p > 1. The proofs employ but rene practical methods used by Jerzy Albrycht and Jerzy Radecki ( in papers which are almost never cited ) as well as by further mathematicians from the great Poznań school.
Rocznik
Strony
33--58
Opis fizyczny
Bibliogr. 28 poz.
Twórcy
autor
autor
Bibliografia
  • [1] U. Abel and M. Ivan, The asymptotic expansion for approximation operators of Favard-Szasz Type, Friedberger Hochschulschriften 2 (1999), 4-13.
  • [2] J. Albrycht and J. Radecki, On a generalization of the theorem of Voronovskaya, Zeszyty Naukowe UAM, Zeszyt 2, Pozna_n (1960), 1-7.
  • [3] A. Attalienti and M. Campiti, Bernstein-type operators on the half line, Czechoslovak Mathematical Journal, 52 (4) (2002), 851-860.
  • [4] C. Bardaro, P.L. Butzer, R.L. Stens and G. Vinti, Convergence in variation and rates of approximation for Bernstein-type polynomials and singular convolution integrals, Analysis (Munich), 23 (4) (2003), 299-346.
  • [5] M. Becker, Global approximation theorems for Szasz-Mirakjan and Baskakov operators in polynomial weight spaces, Indiana Univ. Math. J., 27 (1) (1978), 127-142.
  • [6] M. Becker, Inverse theorems for Favard operators in polynomial weight spaces, Ann. Soc. Math. Pol., Ser I; Comment Math., 22 (1981), 165-173.
  • [7] M. Becker, P.L. Butzer and R.J. Nessel, Saturation for Favard operators in weighted function spaces. Studia Math. 59 (1976), 33-47.
  • [8] M. Becker, D. Kucharski and R.J.Nessel, Global approximation thorems for the Szasz-Mirakjan operators in exponential weight spaces. In: Linear Spaces and Approximation (P.L.Butzer and B. Sz-Nagy, eds). ISNM, Vol 40, Birkhauser Verlag, Basel (1978), pp. 319-333.
  • [9] P.L. Butzer, On the extension of Bernstein polynomials to the infinite interval, Proc. Amer. Math. Soc., 5, (1954), pp. 547-553.
  • [10] I. Chlodowsky, Sur le développement des fonctions définies dans un intervalle infni en séries de polynomes de M. S. Bernstein, Compositio Math., 4 (1937), 380-393.
  • [11] A. Ciupa, Approximation by a generalized Sz_asz type operator, J. Comp. Anal. and Appl., 5 (4) (2003), 413-424.
  • [12] Z, Ditzian, Convergence of sequences of linear positive operators: Remarks and applications. J. Approx. Theory 14(1975), 296-301.
  • [13] J. Favard, Sur les multiplicateurs d'interpolation, J. Math. Pures Appl., 23 (1944), 219-247.
  • [14] W. Gawronski, U. Stadtmüller, Approximation of continuous functions by generalized Favard operators, J. Approx. Theory 34 (1982), 384-396.
  • [15] J. Gröf, Űber Approximation durch Polynome mit Belegungfunktionen, Acta Math. Acad. Sci. Hungar., 35 (1980), 109-116.
  • [16] M. Heilmann, Direct and converse results for operators of Baskakov-Durrmeyer type. Approx. Theory Appl. 5 (1989), no. 1, 105-127.
  • [17] T. Hermann, Approximation of unbounded functions on unbounded interval. Acta Math. Acad. Sci. Hungar. 29 (1977), no. 3-4, 393{398.
  • [18] W. Kratz and U. Stadtmüller, "On the uniform modulus of continuity of certain discrete approximation operators", J. Approx. Theory, 54, no.3 (1988), 326{337.
  • [19] G.G. Lorentz, Bernstein Polynomials, University of Toronto Press,Toronto, 1953.
  • [20] G.M. Mirakyan, Approximation of continous functions with the aid of polynomials (Russian), Dokl.Akad. Nauk SSSR 31 (1941), 201-205.
  • [21] G. Nowak, Direct theorems for generalized Favard-Kantorovich and Favard-Durrmeyer operators in exponential function spaces, Ukrainian Math. J. (to appear).
  • [22] G. Nowak, A. Sikorska-Nowak, On the generalized Favard-Kantorovich and Favard-Durrmeyer operators in exponential function spaces, Journal of Ineq. and Appl., Vol.2007 (2007), Article ID 75142, 12 pages.
  • [23] G. Nowak, P. Pych-Taberska, Approximation properties of the generalized Favard-Kantorovich operators, Ann. Soc. Math. Pol., Ser I; Comment Math., 39 (1999), 139-152.
  • [24] G. Nowak, P. Pych-Taberska, Some properties of the generalized Favard-Durrmeyer operators, Funct. et Approximatio, Comment Math., 29 (2001), 103-112.
  • [25] T. Popoviciu, Sur l'approximation des fonctions convexes d'ordre supérieur, Mathematica (Cluj), 10, (1935), 49-54.
  • [26] P. Pych-Taberska, On the generalized Favard operators, Funct. et Approximatio, Comment Math., 26 (1998), 256-273.
  • [27] L. Rempulska and M. Skorupka, On convergence of first derivatives of certain Szasz-Mirakjan type operators, Rendiconti di Matematica, Serie VII, Vol 13 (1999), 269-279.
  • [28] Z. Stypinski, Theorem of Voronovskaya for Szasz-Chlodovsky operators, Funct. Approximatio Comment. Math. 1 (1974), 133-137.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0011-0063
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.