Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
It is shown that equations of the form φ(X) = ψ(X), in which the unknown X is a set of natural numbers and φ, ψ use the operations of union, intersection and addition of sets S + T = {m + n | m ∈ S, n ∈T}, can simulate systems of equations φ(X1, . . . ,Xn) = φ(X1, . . . ,Xn) with 1 ≤ j ≤ l, in the sense that solutions of any such system are encoded in the solutions of the corresponding equation. This implies computational universality of least and greatest solutions of equations φ(X) = ψ(X), as well as undecidability of their basic decision problems. It is sufficient to use only singleton constants in the construction. All results equally apply to language equations over a one-letter alphabet Σ = {α}.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
329--348
Opis fizyczny
Bibliogr. 16 poz.
Twórcy
autor
autor
- Institute of Computer Science, University of Wrocław, 50–383 Wrocław, Poland, aje@cs.uni.wroc.pl
Bibliografia
- [1] S. Ginsburg, H. G. Rice, "Two families of languages related to ALGOL", Journal of the ACM, 9 (1962), 350-371.
- [2] A. Jeż, "Conjunctive grammars can generate non-regular unary languages", International Journal of Foundations of Computer Science, 19:3 (2008), 597-615.
- [3] A. Jeż, A. Okhotin, "Conjunctive grammars over a unary alphabet: undecidability and unbounded growth", Theory of Computing Systems, 46:1 (2010), 27-58.
- [4] A. Jeż, A. Okhotin, "On the computational completeness of equations over sets of natural numbers" 35th International Colloquium on Automata, Languages and Programming (ICALP 2008, Reykjavik, Iceland, July 7-11, 2008), 63-74.
- [5] A. Jeż, A. Okhotin, "One-nonterminal conjunctive grammars over a unary alphabet", Computer Science inRussia (CSR 2009, Novosibirsk, Russia, 18-23 August, 2009), LNCS 5675, 191-202.
- [6] M. Kunc, "What do we know about language equations?", Developments in Language Theory (DLT 2007,Turku, Finland, July 3-6, 2007), LNCS 4588, 23-27.
- [7] P. McKenzie, K. W. Wagner, "The complexity of membership problems for circuits over sets of natural numbers", Computational Complexity, 16 (2007), 211-244.
- [8] A. Okhotin, "Conjunctive grammars", Journal of Automata, Languages and Combinatorics, 6:4 (2001), 519-535.
- [9] A. Okhotin, "Conjunctive grammars and systems of language equations", Programming and Computer Software,28 (2002), 243-249.
- [10] A. Okhotin, "Unresolved systems of language equations: expressive power and decision problems", TheoreticalComputer Science, 349:3 (2005), 283-308.
- [11] A. Okhotin, "Strict language inequalities and their decision problems", Mathematical Foundations of Computer Science (MFCS 2005, Gda´nsk, Poland, August 29-September 2, 2005), LNCS 3618, 708-719.
- [12] A. Okhotin, "Computational universality in one-variable language equations", Fundamenta Informaticae, 74:4 (2006), 563-578.
- [13] A. Okhotin, "Nine open problems for conjunctive and Boolean grammars", Bulletin of the EATCS, 91 (2007), 96-119.
- [14] A. Okhotin, "Decision problems for language equations", Journal of Computer and System Sciences, 76:3-4 (2010), 251-266.
- [15] A. Okhotin, P. Rondogiannis, "On the expressive power of univariate equations over sets of natural numbers", IFIP International Conference on Theoretical Computer Science (TCS 2008, Milan, Italy, 8-10 September, 2008), IFIP vol. 273, 215-227.
- [16] L. J. Stockmeyer, A. R. Meyer, "Word problems requiring exponential time", STOC 1973, 1-9.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0011-0035