Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper we present a point-free theory of Whiteheadean style of space and time. Its algebraic formulation, called dynamic contact algebra (DCA), is a Boolean algebra whose elements symbolized dynamic regions changing in time, with two spatio-temporal mereotopological relations between them: stable and unstable contact. We prove several representation theorems for DCAs, representing them in structures arising from products of contact algebras or from products of topological spaces. We also present a decidable quantifier-free constraint logic for reasoning about stable and unstable mereotopological relations between dynamic regions. We consider the paper as a first step in point-free dynamic mereotopology.
Wydawca
Czasopismo
Rocznik
Tom
Strony
159--180
Opis fizyczny
Bibliogr. 31 poz.
Twórcy
autor
- Sofia University, Faculty of Mathematics and Computer Science, blvd James Bouchier 5, 1126 Sofia, Bulgaria, dvak@fmi.univ-sofia.bg
Bibliografia
- [1] M. Aiello, I. Pratt-Hartmann and J. van Benthem (eds.), Handbook of spatial logics, Springer, 2007.
- [2] Ph. Balbiani (Ed.), Special Issue on Spatial Reasoning, J. Appl. Non-Classical Logics 12 (2002), No. 3-4.
- [3] Ph. Balbiani, T. Tinchev and D. Vakarelov,Modal Logics for the Region-based Theory of Space. Fundamenta Informaticae, Special Issue: Topics in Logic, Philosophy and Foundation of Mathematics and Computer Science in Recognition of Professor Andrzej Grzegorczyk, vol. (81), (1-3), (2007), 29-82.
- [4] B. Bennett and I. Düntsch, Axioms, Algebras and Topology. In: Handbook of Spatial Logics, M. Aiello, I. Pratt, and J. van Benthem (Eds.), Springer, 2007, 99-160.
- [5] Cohn, A., and Hazarika, S. Qualitative spatial representation and reasoning: An overview. Fundamenta Informaticae 46 (2001), 1-29.
- [6] A. Cohn and J. Renz. Qualitative spatial representation and reasoning. In: F. van Hermelen, V. Lifschitz and B. Porter (Eds.) Handbook of Knowledge Representation, Elsevier, 2008, 551-596.
- [7] T. de Laguna, Point, line and surface as sets of solids, The Journal of Philosophy, 19 (1922), 449-461.
- [8] G. Dimov and D. Vakarelov, Contact Algebras and Region-based Theory of Space. A proximity approach. I and II. Fundamenta Informaticae, 74(2-3):209-249, 251-282, 2006
- [9] I. Düntsch (Ed.), Special issue on Qualitative Spatial Reasoning, Fundam. Inform. 46 (2001).
- [10] I. Düntsch and D. Vakarelov, Region-based theory of discrette spaces: A proximity approach. In: Nadif, M., Napoli, A., SanJuan, E., and Sigayret, A. EDS, Proceedings of Fourth International Conference Journées de l'informatique Messine, 123-129, Metz, France, 2003. Journal version in: Annals of Mathematics and Artificial Intelligence, 49(1-4):5-14, 2007.
- [11] I. Düntsch and M. Winter. A representation theorem for Boolean contact algebras. Theoretical Computer Science (B), 347, (2005), 498-512.
- [12] I. Düntsch and M. Winter. Moving Spaces.In: St. Demri and Ch. S. Jensen Eds. Proceedings of the 15th International Symposium on Temporal Representation and Reasoning (TIME2008), 59-63. IEEE Computer Society, 2008.
- [13] M. Egenhofer, R. Franzosa. Point-set topological spatial relations. International Journal of Geographical Information Systems, 5 (1991), 161-174.
- [14] P. T. Johnstone, Stone Spaces, Cambridge Univ. Press, Cambridge, 1982.
- [15] R. Konchakov,A. Kurucz, F.Wolter andM. Zakharyaschev, Spatial Logic + Temporal Logic = ? In:Handbook of spatial logics, M. Aiello, I. Pratt, and J. van Benthem (Eds.), 497-564, 2007.
- [16] K. Kuratowski. Topology, vol I. Academic Press, New York and London, 1966.
- [17] V. Nenchev and D. Vakarelov,An Axiomatization of Dynamic Ontology of Stable and UnstableMereological Relations, Proceedings of the 7-th Panhellenic Logic Symposium, July 15-19, 2009, Patras, Greece, 137-141.
- [18] I. Pratt-Hartmann, First-order region-based theories of space, In: Handbook of Spatial Logics , M. Aiello, I. Pratt and J. van Benthem (Eds.), Springer, 2007, 13-97.
- [19] Randell, D. A., Cui, Z.and Cohn, A. G. A spatial logic based on regions and connection. In: B. Nebel, W. Swartout, C. Rich (EDS.) Proceedings of the 3rd International Conference Knowledge Representation and Reasoning,Morgan Kaufmann, Los Allos, CA, pp. 165-176, 1992.
- [20] P. Simons, PARTS. A Study in Ontology, Oxford, Clarendon Press, 1987.
- [21] R. Sikorski, Boolean Algebras, Springer-Verlag, Berlin, 1964.
- [22] J. Stell, Boolean connection algebras: A new approach to the Region Connection Calculus,Artif. Intell. 122 (2000), 111-136.
- [23] A. Tarski Foundations of the geometry of solids. In Woodger, J.H., editor, Logic, Semantics, metamathematics, pp 24-29. Clarendon Press. Oxford, 1956. Translation of the summary of address given by Tarski to the First Polish Mathematical Congress, Lwów, 1927.
- [24] D. Vakarelov, Region-Based Theory of Space: Algebras of Regions, Representation Theory and Logics. In: Dov Gabbay et al. (Eds.) Mathematical Problems from Applied Logics. New Logics for the XXIst Century. II. Springer, 2007, 267-348.
- [25] D. Vakarelov: A modal approach to dynamic ontology: modalmereotopology. Logic and Logical Philosophy, (17)(2008):167-187.
- [26] D. Vakarelov, Dynamic Mereotopology: A point-free Theory of Changing Regions. MASSEE, International Congress of Mathematics MICOM 2009, Book of abstracts, page 109.
- [27] D. Vakarelov, Temporal representation of contact algebras. An extended abstract in the Proceedings of "Special Session 120 years Faculty of mathematics at Sofia University". 2009. To appear.
- [28] A. N. Whitehead, The Organization of Thought, London,William and Norgate, 1917
- [29] A. N. Whitehead,Science and the Modern World. New Work, The MacMillan Company, 1925.
- [30] A. N. Whitehead, Process and Reality, New York, MacMillan, 1929.
- [31] F. Wolter. and M. Zakharyaschev, Spatial representation and reasoning in RCC-8 with Boolean region terms, In:Proceedings of the 14th European Conference on Artificial Intelligence (ECAI 2000), HornW. (Ed.), IOS Press, pp. 244-248.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0010-0053