PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A Framework for Iterated Belief Revision Using Possibilistic Counterparts to Jeffrey's Rule

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Intelligent agents require methods to revise their epistemic state as they acquire new information. Jeffrey’s rule, which extends conditioning to probabilistic inputs, is appropriate for revising probabilistic epistemic states when new information comes in the form of a partition of events with new probabilities and has priority over prior beliefs. This paper analyses the expressive power of two possibilistic counterparts to Jeffrey's rule for modeling belief revision in intelligent agents. We show that this rule can be used to recover several existing approaches proposed in knowledge base revision, such as adjustment, natural belief revision, drastic belief revision, and the revision of an epistemic state by another epistemic state. In addition, we also show that some recent forms of revision, called improvement operators, can also be recovered in our framework.
Słowa kluczowe
Wydawca
Rocznik
Strony
147--168
Opis fizyczny
Bibliogr. 33 poz., tab.
Twórcy
autor
autor
autor
Bibliografia
  • [1] Ben Amor, N., Benferhat, S., Dubois, D., Geffner, H., Prade, H.: Independence in Qualitative Uncertainty Frameworks, 7th International Conference on Principles of Knowledge Representation and Reasoning (KR2000), Breckenridge, Colorado,Morgan Kaufmann, 2000.
  • [2] Benferhat, S., Dubois, D., Prade, H.,Williams,M.-A.: A practical approach to revising prioritized knowledge bases, Studia Logica Journal, 70, 2002, 105-130.
  • [3] Benferhat, S., Kaci, S.: Logical representation and fusion of prioritized information based on guaranteed possibility measures, Artificial Intelligence, 148, 2003, 291-333.
  • [4] Benferhat, S., Konieczny, S., Papini, O., Pino Pérez, R.: Iterated revision by epistemic states: axioms, semantics and syntax, Proc. of the 14th European Conf. on Artificial Intelligence (ECAI-00), IOS Press, Berlin, Allemagne, August 2000.
  • [5] Benferhat, S., Sedki, K., Tabia, K.: On analysis of the unicity of Jeffrey's rule of conditioning in a possibilistic framework, The Eleventh International Symposium on Artificial Intelligence and Mathematics ISAIM'2010, To appear, 2010.
  • [6] Boutilier, C.: Revision sequences and nested conditionals, Proc. of the 13th Inter. Joint Conf. on Artificial Intelligence (IJCAI'93), 1993.
  • [7] Chan, H., Darwiche, A.: On the Revision of Probabilistic Beliefs Using Uncertain Evidence, Artificial Intelligence, 163, 2005, 67-90.
  • [8] Coletti, G., Vantaggi, B.: T-conditional possibilities: Coherence and inference, Fuzzy Sets and Systems, 160(3), 2009, 306-324.
  • [9] Darwiche, A., Pearl, J.: On the logic of iterated revision, Artificial Intelligence, 89, 1997, 1-29.
  • [10] Domotor, Z.: Probability kinematics - Conditional and entropy principles, Synthese, 63, 1985, 74-115.
  • [11] Dubois, D.: Three Scenarios for the Revision of Epistemic States, J. Log. Comput., 18(5), 2008, 721-738.
  • [12] Dubois, D., Fargier, H., Prade, H.: Ordinal and Probabilistic Representations of Acceptance, J. Artif. Intell. Res. (JAIR), 22, 2004, 23-56.
  • [13] Dubois, D., Hajek, P., Prade, H.: Knowledge-Driven versusData-Driven Logics, Journal of Logic, Language, and Information, 9, 2000, 65-89.
  • [14] Dubois, D., Lang, J., Prade, H.: Handbook of Logic in Artificial Intelligence and Logic Programming, in: Nonmonotonic Reasoning and Uncertain Reasoning (D. M. Gabbay, C. J. Hogger, J. A. Robinson, Eds.), vol. 3, chapter Possibilistic Logic, Oxford Science Publications, 1994, 439-513.
  • [15] Dubois, D., Prade, H.: A synthetic view of belief revision with uncertain inputs in the framework of possibility theory, Int. J. Approx. Reasoning, 17, 1997, 295-324.
  • [16] Dubois, D., Prade, H.: Possibility theory: qualitative and quantitative aspects., Handbook of Defeasible Reasoning and Uncertainty Management Systems. (D. Gabbay, Ph. Smets, eds.), Vol. 1: Quantified Representation of Uncertainty and Imprecision (Ph. Smets, ed.), 1998, 169-226.
  • [17] Gärdenfors, P.: Knowledge in Flux: Modeling the Dynamics of Epistemic States, Bradford Books,MIT Press, Cambridge, 1988.
  • [18] Grove, A.: Two modellings for theory change, Journal of Philosophical Logic, 17(157-180), 1988.
  • [19] Jeffrey, R. C..: The Logic of Decision, Mc. Graw Hill, New York, 1965.
  • [20] Konieczny, S., Pérez, R.: On the logic of merging, Proceedings of the Sixth International Conference on Principles of Knowledge Representation and Reasoning (KR'98), 1998.
  • [21] Konieczny, S., Pérez, R. P.: A framework for iterated revision, Journ. of Applied Non-Classical Logics, 10(3-4), 2000.
  • [22] Konieczny, S., Perez, R. P.: Improvement Operators, 11th International Conference on Principles of Knowledge Representation and Reasoning(KR'08), 2008.
  • [23] Nayak, A.: Iterated Belief Change Based on Epistemic Entrenchment, Erkenntnis, 41, 1994, 353-390.
  • [24] Nebel, B.: Base revision operations and schemes: semantics, representation, and complexity, Proceedings of the Eleventh European Conference on Artificial Intelligence (ECAI'94), 1994.
  • [25] Papini, O.: Iterated revision operations stemming from the history of an agent's observations., in: Frontiers of Belief Revision (H. Rott, M. Williams, Eds.), Kluwer, Dordrecht, The Netherlands, 2001, 281-293.
  • [26] Pearl, J.: Probabilistic Reasoning in Intelligent Systems : Networks of Plausible Inference, Morgan Kaufmann Publ. Inc., San Mateo, Ca, 1988.
  • [27] Shackle, G.: Decision, Order and Time in Human Affairs, Cambridge University Press, UK, 1961.
  • [28] Shafer, G.: A Mathematical Theory of Evidence, Princeton University Press, 1976.
  • [29] Spohn, W.: Ordinal conditional functions: a dynamic theory of epistemic states, in: Causation in Decision, Belief Change, and Statistics (W. L. Harper, B. Skyrms, Eds.), vol. 2, D. Reidel, 1988, 105-134.
  • [30] Spohn, W.: A general non-probabilistic theory of inductive reasoning, in: Uncertainty in Artificial Intelligence, vol. 5, Elsevier Science, 1990, 149-158.
  • [31] Thielscher, M.: Handling Implicational and Universal Quantification Constraints in FLUX, Proceedings of the International Conference on Principle and Practice of Constraint Programming (CP) (van Beek, Ed.), 3709, Springer, Sitges, Spain, October 2005.
  • [32] Williams, M. A.: Transmutations of knowledge systems, Inter. Conf. on principles of Knowledge Representation and reasoning (KR'94) (J. Doyle, al. Eds, Eds.), Morgan Kaufmann, 1994.
  • [33] Williams, P.: Bayesian conditionalization and the principle of minimum information, British J. for the Philosophy of Sciences, 31, 1980, 131-144.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0010-0029
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.