PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Design of a Hybrid Quantizer with Variable Length Code

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper a new model for compression of Laplacian source is given. This model consists of hybrid quantizer whose output levels are coded with Golomb-Rice code. Hybrid quantizer is combination of uniform and nonuniform quantizer, and it can be considered as generalized quantizer, whose special cases are uniform and nonuniformquantizers. We propose new generalized optimal compression function for companding quantizers. Hybrid quantizer has better performances (smaller bit-rate and complexity for the same quality) than both uniform and nonuniformquantizers, because it joins their good characteristics. Also, hybrid quantizer allows great flexibility, because there are many combinations of number of levels in uniform part and in nonuniformpart, which give similar quality. Each of these combinations has different bit-rate and complexity, so we have freedom to choose combination which is the most appropriate for our application, in regard to quality, bit-rate and complexity. We do not have such freedom of choice when we use uniform or nonuniform quantizers. Until now, it has been thought that uniform quantizer is the most appropriate to use with lossless code, but in this paper we show that combination of hybrid quantizer and lossless code gives better performances. As lossless code we use Golomb-Rice code because it is especially suitable for Laplacian source since it gives average bit-rate very close to the entropy and it is easier for implementation than Huffman code. Golomb-Rice code is used in many modern compression standards. Our model can be used for compression of all signals with Laplacian distribution.
Wydawca
Rocznik
Strony
233--256
Opis fizyczny
Bibliogr. 21 poz., tab., wykr.
Twórcy
autor
Bibliografia
  • [1] Consultative Committee for Space Data Systems (CCSDS), Lossless Data Compression, Blue Book, Issue 1, 1997.
  • [2] Elabdalla, A. R., Irshid, M.: An efficient bitwise Huffman coding technique based on source mapping, Computer and Electrical Engineering, 27, 2001, 265-272.
  • [3] Fredriksson, K., Tarhio, J.: Efficient String Matching in Huffman Compressed Texts, Fundamenta Informaticae, 63(1), 2004, 1-16.
  • [4] Hankerson, D., Harris, G. A., Johnson, P. D. Jr., Introduction to information theory and data compression, Second edition, CHAPMAN & HALL/CRC, 2004.
  • [5] Jayant, N. S., Noll, P.: Digital Coding of Waveforms, Prentice-Hall, 1984.
  • [6] Judell, N., Scharf, L.: A simple derivation of Lloyd's classical result for the optimum scalar quantizer, IEEE Transactions on Information Theory, 32, 1986, 326-328.
  • [7] Leon-Salas, D. W., Balkir, S., Sayood, K., Hoffman, W. M.: An Analog-to-Digital Converter with Golomb-Rice Output Codes, IEEE Transactions on Circuits and Systems-II: Express Briefs, 53, 2006, 278-282.
  • [8] Liebchen, T., Reznik, Y.: MPEG-4 ALS: an Emerging Standard for Lossless Audio Coding, in: Proceeding of the Data Compression Conference (DCC), IEEE Computer Society, 2004, 439-448.
  • [9] Malvar, H.: Adaptive Run-Length/Golomb-Rice Encoding of Quantized Generalized Gaussian Sources with Unknown Statistics, in: Proceeding of the Data Compression Conference (DCC), IEEE Computer Society, 2006, 23-32.
  • [10] Marcellin, W. M., Lepley, A. M., Bilgin, A., Flohr, J. T., Chinen, T. T., Kasner, H. J.: An overview of quantization in JPEG 2000, Signal Processing: Image Communication, 17, 2002, 73-84.
  • [11] Na, S.: On the Support of Fixed-Rate Minimum Mean-Squared Error Scalar Quantizers for Laplacian Source, IEEE Transactions on Information Theory, 50, 2004, 937-944.
  • [12] Oger, M., Ragot, S., Antonini, M.: Model-based deadzone optimization for stack-run audio coding with uniform scalar quantization, in: Proceeding of ICASSP, Las Vegas, 2008, 4761-4764.
  • [13] Perić, Z., Nikolić, J., Pokrajac, D.: Optimal designing scalar quantizers using a hybrid quantization method for the Laplacian source, in: Proceeding of the 4th WSEAS International Conference on Electromagnetics, Wireless and Optical Communications, 2006, 156-162.
  • [14] Perić, Z., Nikolić, J., Pokrajac, D.: Hybrid Scalar Quantizer for the Laplacian Source, WSEAS Transactions on Communications, 6, 2007, 60-65.
  • [15] Perić, Z., Petković, M., Dincić, M.: Simple Compression Algorithm for Memoryless Laplacian Source Based on the Optimal Companding Technique, Informatica, 20(1), 2009, 99-114.
  • [16] Rice, R. F., Yeh, P. S., Miller, W. H.: Algorithms for high speed universal noiseless coding module, in: Proceeding of the AIAA Computing in Aerospace Conference, San Diego, 1993.
  • [17] Salomon, D.: Variable-length Codes for Data Compression, Springer, 2007.
  • [18] Sayood, K.: Introduction to Data Compression, Third edition, Elsevier Inc., 2006.
  • [19] Tsai, P. C., Wang, S. J., Lin, C. H., Yeh, T. H.: Test Data Compression for Minimum Test Application Time, Journal of Information Science and Engineering, 23, 2007, 1901-1909.
  • [20] Weinberger,M., Seroussi, G., Sapiro, G.: The LOCO-I lossless image compression algorithm: Principles and standardization into JPEG-LS, IEEE Trans. Image Processing, 9, August 2000, 1309-1324.
  • [21] Zolghadr-E-Asli, A., Alipour, S.: An effective method for still image compression /decompression for transmission on PSTN lines based on modifications of Huffman coding, Computer and Electrical Engineering, 30, 2004, 129-145.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0010-0013
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.