PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Adsorptive removal of Zinc by bentonite: application of time series modeling method

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Zinc (II) removal using low-cost sorbents requires a proper process parametric study to determine its optimal performance characteristics. In this respect, the present study proposes a new modeling and simulation procedure for heavy metal removal system and is carried out to optimize input variables such as initial pH, adsorbent dosage, and contact time for biosorption of Zinc (II) by using bentonite. The proposed experimental system is cost-effective and requires less calculation for determining optimal values, i.e., input variables and their related removal capacity, R_em%. To optimize the adsorption process, cubic spline curve fitting and numerical differentiation techniques are used for required calculations. According to the proposed calculations, the removal capacity is calculated as 98.66%, while the optimal values are calculated as initial pH – 6.76, adsorbent dosage – 1.14 g L-1, contact time – 13 minutes. To evaluate the results, full factor experimental design and 3 way ANOVA test are used for comparison.
Rocznik
Strony
101--113
Opis fizyczny
Bibliogr. 23 poz., tab., wykr.
Twórcy
autor
  • Department of Material Science and Engineering, Ondokuz Mayis University 55139, Kurupelit – Samsun – Turkey, basakm@omu.edu.tr
Bibliografia
  • [1] Abou-El-Sherbini K.S., M.M. Hassanien: Study of organically-modified monmorillonite clay for the removal of copper (II), Journal of Hazardous Materials, 184, 654-661 (2010).
  • [2] Bhattacharyya A.K., S.N. Mandal, S.K. Das: Adsorption of Zn (II) from aqueous solution by using different adsorbents, Chemical Engineering Journal, 123, 43-51 (2006).
  • [3] Chiron N., R. Guilet, E. Deydier: Adsorption of Cu(II) and Pb(II) onto a grafted silica isotherms and kinetic models, Water Resource, 3079-3086 (2003).
  • [4] Hajjaji M., H.E. Arfaoui: Adsorption of methylene blue and zinc ions on raw and acid-activated bentonite from Morocco, Apply Clay Science, 46, 418-421 (2009).
  • [5] Kandah M.I.: Zinc and cadmium adsorption on low-grade phosphate, Purif. Technol., 35, 61-70 (2004).
  • [6] Kaoser S., S. Barrington, M. Electrowicz, L. Wang: Effect of Pb and Cd on Cu adsorption by sandbentonite liners, Canadian Journal Civil Eng., 32, 241-249 (2005).
  • [7] Korkut Ö., E. Sayan, O.L. Laçin, B. Bayrak: Investigation of adsorption and ultrasound assisted desorption of lead (II) and copper (II) on local bentonite: A modelling study, Desalination, 259, 243-248 (2010).
  • [8] Li J.: General explicit difference formulas for numerical differentiation, Journal of Computational and Applied Mathematics, 183, 29-52 (2005).
  • [9] Manohar D.M., B.F. Noeline, T.S. Anirudhan: Adsorption performance of Al-pillared bentonite clay for the removal of cobalt(II) from aqueous phase, Apply Clay Science, 31, 194-206 (2006).
  • [10] Mathews J.H., K.K. Fink: Numerical Methods Using Matlab, 4th Edition, Prentice-Hall., USA, 2004.
  • [11] Mohan D., K.P. Singh: Single- and multi-component adsorption of cadmium and zinc using activated carbon derived from bagasse-an agricultural waste, Water Resource, 36, 2304-2318 (2002).
  • [12] Olu-Owalabi B.I., E.I. Unuabonah: Kinetic and thermodynamics of the removal of Zn2+ and Cu2+ from aqueous solution by sulphate and phosphate-modified Bentonite clay, Journal of Hazardous. Materials, 184, 731-738 (2010).
  • [13] Prasad M., S. Saxena, S.S. Amritphale: Adsorption models for sorption of lead and zinc on francolite mineral, Industrial and Engineering Chemical Research, 41, 105-111 (2002).
  • [14] Ramm A.G., A.B. Smirnova: On stable numerical differentiation, Math. Comput., 70(235), 1131-1153 (2001).
  • [15] Ricou-Hoeffer P., I. Lecuyer, P.L. Cloirec: Experimental design methodology applied to adsorption of metallic ions onto fly ash, Water Resource, 35, 965-976 (2001).
  • [16] Sarkar M., A.R. Sarkar, J.L. Goswami: Mathematical modeling for the evaluation of zinc removal efficiency on clay sorbent, Journal of Hazardous Materials, 149, 666-674 (2007).
  • [17] Schlegel M., A. Manceau, D. Chateigner, L. Charlet: Sorption of metal ions on clay minerals: I. Polarized EXAFs evidence for the adsorption of Co on the edges of hectorite particles, Journal of Colloid Interface Science, 215, 140-158 (1999).
  • [18] Sen T.K., D. Gomez: Adsorption of zinc (Zn2+) from aqueous solution on natural bentonite, Desalination, DOI: 10.1016/j.desal.2010.09.041 (2010).
  • [19] Tachev G.: Approximation, numerical differentiation and integration based on Taylor polynomial, Journal of Inequal. Pure Appl. Math., 10, 1-7 (2009).
  • [20] Thant A.A., K.K. Aye: Application of cubic spline interpolation to walking patterns of biped robot, World Academy Science & Engineering Technology, 50, 27-34 (2009).
  • [21] Venkateswarlu P., G. Viyaja Durga, N. Chitti Babu, M. Venkateswara Rao: Biosorption of Zn (II) from an Aqueous Solution by Erythrina variegata orientalis Leaf Powder, International Journal of Phys. Sci., 3, 197-204.
  • [22] Weng C., C.P. Huang: Adsorption characteristics of Zn(II) from dilute aqueous solution by fly ash, Colloids Surf., A 348 137-143 (2004).
  • [23] Yetilmezsoy K., S. Demirel, R.J. Vanderbei: Response surface modeling of Pb(II) removal from aqueous solution by Pistacia vera L.: Box-Behnken experimental design, Journal of Hazardous Materials, 171, 551-562 (2009).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0009-0095
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.