PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Membrane techniques in the removal of inorganic anionic micropollutants from water environment - state of the art

Identyfikatory
Warianty tytułu
PL
Techniki membranowe w usuwaniu nieorganicznych mikrozanieczyszczeń anionowych ze środowiska wodnego - stan wiedzy
Języki publikacji
EN
Abstrakty
EN
A number of inorganic compounds, including anions such as nitrate(V), chlorate(VII), bromate (V), arsenate(III) and (V), borate and fluoride as well as metals forming anions under certain conditions, have been found in potentially harmful concentrations in numerous water sources. The maximum allowed levels of these compounds in drinking water set by the WHO and a number of countries are very low (in the range of mg/l to a few mg/l), thus the majority of them can be referred to as charged micropollutants. Several common treatment technologies which are nowadays used for removal of inorganic contaminants from natural water supplies, represent serious exploitation problems. Membrane processes such as reverse osmosis (RO), nanofiltration (NF), ultrafiltration (UF) and microfiltration (MF) in hybrid systems, Donnan dialysis (DD) and electrodialysis (ED) as well as membrane bioreactors (MBR), if properly selected, offer the advantage of producing high quality drinking water without inorganic anions.
PL
Szereg związków nieorganicznych, w tym aniony (głównie: azotany, nadchlorany, bromiany, arseniany, borany i fluorki), jak również metale tworzące w określonych warunkach aniony (np. chrom), występuje w potencjalnie szkodliwych stężeniach w licznych źródłach wody do picia. Maksymalne dopuszczalne wartości ich stężeń w wodzie do picia, ustalone przez WHO i szereg krajów, są bardzo niskie (w zakresie od žg/l do kilku mg/l) i w związku z tym większość z nich może być zaliczona do mikrozanieczyszczeń. Kilka tradycyjnych technologii, które stosuje się obecnie do usuwania zanieczyszczeń nieorganicznych ze źródeł wody naturalnej, stwarza poważne problemy eksploatacyjne. Procesy membranowe, odwrócona osmoza (RO), nanofiltracja (NF), ultrafiltracja (UF) i mikrofiltracja (MF) w systemach zintegrowanych, dializa Donnana (DD) i elektrodializa (ED) oraz bioreaktory membranowe (MBR), właściwie dobrane, umożliwiają produkcję wody do picia o wysokiej jakości, pozbawioną anionów nieorganicznych.
Rocznik
Strony
15--29
Opis fizyczny
Bibliogr. 41 poz. tab., wykr.
Twórcy
autor
autor
  • Silesian University of Technology, Institute of Water and Wastewater Engineering, Konarskiego str. 18, 44-100 Gliwice, Poland,, michal.bodzek@polsl.pl
Bibliografia
  • [1] Ann.: Remediation Technologies for Perchlorate Contamination in Water and Soil, Prepared by The Interstate Technology & Regulatory Council, Washington 2008.
  • [2] Ann.: Technologies and Costs for Removal of Arsenic from Drinking Water, United States Environmental Protection Agency Report EPA 815-R-00-028, December 2000.
  • [3] Bick A., G. Oron: Post-treatment design of seawater reverse osmosis plants: boron removal technology selection for potable water production and environmental control, Desalination, 178, 233-246 (2005).
  • [4] Bodzek M., K. Konieczny: Wykorzystanie technik membranowych w uzdatnianiu wody do picia. Cz. I. Usuwanie związków nieorganicznych, Technologia Wody, 1, no 9-21,26 (2010).
  • [5] Bodzek M., K. Konieczny: Zastosowanie procesów membranowych w uzdatnianiu wody, Oficyna Wydawnicza Projprzem-Eko, Bydgoszcz 2005.
  • [6] Bryjak M., J. Wolska, N. Kabay: Removal of boron from seawater by adsorption -membrane hybrid process: implementation and challenges, Desalination, 223, 57-62 (2008).
  • [7] Butler R., A. Godley, L. Lytton, E. Cartmell: Bromate environmental contamination: Review of impact and possible treatment, Critical Reviews in Environmental Science and Technology, 35, 193-217 (2005).
  • [8] Crespo J.G., S. Velizarov, M.A. Reis: Membrane bioreactors for the removal of anionic micropollutants from drinking water, Current Opinion in Biotechnology, 15, 463-468 (2004).
  • [9] Dilek C., H.O. Ozbelge, N. Bicak, L. Yilmaz: Removal of boron from aqueous solution by continuous polymer enhanced-ultrafiltration by polyvinyl alcohol, Sep. Sci. Technol., 37, 1257-1271 (2002).
  • [10] Downing L.S., R. Nerenberg: Kinetics of microbial bromated reduction in a hydrogen-oxidizing, denitrifying biofilm reactor, Biotechnol. Bioeng., 98, 543-550 (2007).
  • [11] Ergas S.J., D.E. Rheinheimer: Drinking water denitrification using a membrane bioreactor, Water Research, 38, 3225-3232 (2004).
  • [12] Flury M., A. Papritz: Bromide in the natural environment-Occurrence and toxicity, J. Environ. Qual., 22, 747-758 (1993).
  • [13] Hafiane A., D. Lemordant, M. Dhahbi: Removal of hexavalent chromium by nanofiltration, Desalination, 130, 305-312 (2000).
  • [14] Han B., T. Runnells, J. Zimbron, R. Wickramasinghe: Arsenic removal from drinking water by flocculation and microfiltration, Desalination, 145, 293-298 (2002).
  • [15] Hijnen W. A. M., R. Jong, D. Van der Kooij: Bromate removal in a denitrifying bioreactor used in water treatment, Water Research, 33, 1049-1053 (1999).
  • [16] Hu K., J.M. Dickson: Nanofiltration membrane performance on fluoride removal from water, Journal of Membrane Science, 279, 529-538 (2006).
  • [17] Huq H.P., J-S. Yang, J-W. Yang: Removal of perchlorate from groundwater by the polyelectolyte-enhanced ultrafiltration process, Desalination, 204, 335-343 (2007).
  • [18] Hutchinson T., M. Hutchings, K. Moore: A review of the effects of bromated on aquatic organisms and toxicity of bromate to oyster (Crassostrea gigas) embryos, Ecotox. Environ. Safety, 38, 238-243 (1997).
  • [19] Kabay N., O. Arar, F. Acar, A. Ghazal, U. Yuksel, M. Yuksel: Removal of boron from water by electrodialysis: effect of feed characteristics and interfering ions, Desalination, 223, 63-72 (2008).
  • [20] Kartinen E.O., C.J. Martin: An overview of arsenic removal processes, Desalination, 103, 79-88 (1995).
  • [21] Kociołek-Balawejder E., Ł.J. Wilk: Przegląd metod usuwania nadchloranów z wód, Przemysł Chemiczny, 88, 1221-1228 (2009).
  • [22] Kołtuniewicz A.B., E. Drioli: Membranes In Clean Technologies, Wiley-VchVerlag GmbH, Weinheim 2008.
  • [23] Lee S., N. Quyet, E. Lee, S. Kim, S. Lee, Y.D. Jung, S.H. Choi, J. Cho: Efficient removals of tris (2-chloroethyl) phosphate (TCEP) and perchlorate using NF membrane filtrations, Desalination, 221, 234-237 (2008).
  • [24] Mors C.G.: Perchlorate ground water treatment, Pollution Engineering, October (2003).
  • [25] Nguyen C.M., S. Bang, J. Cho, K.-W. Kim: Performance and mechanism of arsenic removal from water by a nanofiltration membrane, Desalination, 245, 82-94 (2009).
  • [26] Owlad M., M.K. Aroua, W.A.W. Daud, S Baroutian: Removal of hexavalent chromium-contaminated water and wastewater: A Review, Water Air Soil Pollution, 200, 59-77 (2009).
  • [27] Pawlak Z., S. Żak, L. Zabłocki: Removal of hazardous metals from groundwater by reverse osmosis, Polish J. of Environ. Stud., 15, 579-583 (2006).
  • [28] Prados-Ramirez M., N. Ciba, M. Bourbigot: Available techniques for reducing bromate in drinking water, Water Supply, 13, 61-70 (1995).
  • [29] Raczuk J.: Nitrogen compounds in well water as a factor of a health risk to the Maciejowice commune inhabitants (Mazowieckie Voivodeship), Archives of Environmental Protection, 36(4), 31-39 (2010).
  • [30] Roquebert V., S. Booth, R.S. Cushing, G. Crozes, E.Hansen: Electrodialysis reversal (EDR) and ion exchange as polishing treatment for perchlorate treatment, Desalination, 131, 285-291 (2000).
  • [31] Sehn P.: Fluoride removal with extra low energy reverse osmosis membranes: three years of large scale field experience in Finland, Desalination, 223, 73-84 (2008).
  • [32] Shih M.-C.: An overview of arsenic removal by pressure-driven membrane processes, Desalination, 172, 85-97 (2005).
  • [33] Tahaikt M., A. Haddou, R. El Habbani, Z. Amor, F. Elhannouni, M. Taky, M. Kharif, A. Boughriba, M. Hafsi, A. Elmidaoui: Comparison of the performances of three commercial membranes in fluoride removal by nanofiltration. Continuous operations, Desalination, 225, 209-219 (2008).
  • [34] Taleb-Ahmed M., R. Taha, S. Maachi, G. Dorange: The influence of physico-chemistry on the retention of chromium ions during nanofiltration, Desalination, 145, 103-108 (2002).
  • [35] Van der Bruggen B., C. Vandecasteele: Removal of pollutants from surface water and ground water by nanofiltration: overview of possible applications in the drinking water, Environmental Pollution, 122, 435-445 (2003).
  • [36] Van der Hoek J.P., D.O. Rijnbende, C.J.A. Lokin, P.A.C. Bonne, M.T. Loonen, A.M.H Hofman: Electrodialysis as an alternative for reverse osmosis in an integrated membrane system, Desalination, 117, 159-172 (1998).
  • [37] Velizarov S., C. Matos, A. Oehmen, S. Serra, M. Reis, J. Crespo: Removal of inorganic charged micropollutants from drinking water supplies by hybrid ion exchange membrane processes, Desalination, 223, 85-90 (2008).
  • [38] Velizarov S., J.G. Crespo, M.A. Reis: Removal of inorganic anions from drinking water supplies by membrane bio/processes, Reviews in Environmental Science & Bio/Technology, 3, 361-380 (2004).
  • [39] Wang C., L. Lippincott, X. Meng: Kinetics of biological perchlorate reduction and pH effect, J. Hazard. Mater., 153, 663-669 (2008).
  • [40] Wiśniewski J.: Electromembrane processses, [in:] Membrane Separations (A.Noworyta, A.Trusek-Hołownia, Eds), Argi, Wrocław 2001, 147-179.
  • [41] Wiśniewski J.A., S. Kliber: Bromate removal from water in electrodialysis process, Monografie Komitetu Inżynierii Środowiska PAN, 66, 305-313 (2010).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0009-0077
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.