PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effects of polycyclic aromatic hydrocarbons exposure on antioxidant system activities and proline content in Kandelia candel

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The antioxidant system effects of Kandelia candel were investigated under four different levels of PAH stress. The activities of antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD), the responses to the change of malondialdehyde (MDA) contents and the accumulation of proline in K. candel were determined. Our results suggested that the activities of SOD, CAT, POD increased significantly in leaves and roots of K. candel (p≤0.05) with the increase of the external PAH concentrations, while in stems, the activities of these antioxidant enzymes were all significantly inhibited (p≤0.01). We also observed an increase of MDA in leaves, stems and roots, and an obvious correlation between MDA content and PAH concentrations in three locations, which showed that the change of MDA content could be used as a biomarker of K. candel under PAH stress. The proline content was found remarkably enhanced in leaves, stems and roots. However, a significant inverse correlation was observed between the proline content and SOD (r=-0.99, p≤0.01), POD (r=-0.95, p≤0.05) activities in stems. This study suggested that the antioxidative system of K. candel has an obvious organ-dependent feature when exposed to PAH contamination as revealed by discriminant analysis (DA).
Rocznik
Strony
9--18
Opis fizyczny
Bibliogr. 61 poz., tab., wykr.
Twórcy
autor
autor
autor
autor
autor
autor
autor
  • State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China Tel/Fax: 8620-89023102(O), yswang@scsio.ac.cn
Bibliografia
  • 1.Alia P.M., Matysik J., 2001, Effect of proline on the production of singlet oxygen, Amino Acids, 21: 195-200
  • 2.Alscher R.G., Erturk N., Heath L.S., 2002, Role of superoxide dismutases (SODs) in controlling oxidative stress in plants, J. Exp. Bot., 53: 1331-1341
  • 3.Bailly C., Benamar A., Corbineau F., Come D., 1996, Changes in malondialdehyde content and in superoxide dismutase, catalase and glutathione reductase activities in sunflower seed as related to deterioration during accelerated aging, Physiol. Plantarum, 97: 104-110
  • 4.Bayen S., Wurl O., Karuppiah S., Sivasothi N., Lee H.K., Obbard J.P., 2005, Persistent organic pollutants in mangrove food webs in Singapore, Chemosphere, 61: 303-313
  • 5.Beauchamp C., Fridovich I., 1971, Superoxide dismutase: improved assays and an assay applicable to acrylamide gels, Anal. Biochem., 44: 276-287
  • 6.Bradford M.M., 1976, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of proteindye binding, Anal. Biochem., 72: 248-254
  • 7.Candan N., Tarhan L., 2003, Relationship among chlorophyll-carotenoid content, antioxidant enzyme activities and lipid peroxidation levels by Mg2+ deficiency in the Mentha pulegium leaves, Plant Physiol. Bioch., 41: 35-40
  • 8.Chen J.X., Wang X.F., 2006, The Laboratory Illustration of Plant Physiology, South China University of Techonology Press, Guang Zhou
  • 9.Chen J., Wong M.H., Wong Y.S., Tam N.F.Y., 2008, Multi-factors on biodegradation kinetics of polycyclic aromatic hydrocarbons (PAHs) by Sphingomonas sp. a bacterial strain isolated from mangrove sediment, Mar. Pollut. Bull., 57: 695-702
  • 10.Chiang D.A., Lin N.P., 2000, Partial correlation of fuzzy sets, Fuzzy Set Syst., 110: 209-215
  • 11.Duke N.C., Watkinson A.J., 2002, Chlorophyll-deficient propagules of Avicennia marina and apparent longer term deterioration of mangrove fitness in oil-polluted sediments, Mar. Pollut. Bull., 44:1269-1276
  • 12.Dutrieux E., Martin F., Debry A., 1990, Growth and mortality of Sonneratia caseolaris planted on an experimentally oil-polluted soil, Mar. Pollut. Bull., 21: 62-68
  • 13.Flowers-Geary L., Bleczinski W., Harvey R.G., Penning M.T., 1996, Cytotoxicity and mutagenicity of polycyclic aromatic hydrocarbon oquinones produced by dihydrodiol dehydrogenase, Chemico-Biol. Interact., 99: 55-72
  • 14.Fridovich I., 1986, Biological effects of the superoxide radical, Arch. Biochem. Biophys., 247: 1-11
  • 15.Gao Y., Zhu L., 2004, Plant uptake, accumulation and translocation of phenanthrene and pyrene in soils, Chemosphere, 55: 1169-1178
  • 16.Gill S.S., Tuteja N., 2010, Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants, Plant Physiol. Bioch., 48: 909-930
  • 17.Hare P.D., Cress W.A., 1997, Metabolic implications of stress-induced proline accumulation in plants, Plant Growth Regul., 21: 79-102
  • 18.Imlay J.A., Linn S., 1988, DNA damage and oxygen radical toxicity, Science, 240: 1302-1309
  • 19.Jaleel C.A., Riadh K., Gopi R., Manivanan P., Inès J., Al-Juburi H.J., Chang-Xing Z., Hong-Bo S., Panneerselvam R., 2009, Antioxidant defense responses: physiological plasticity in higher plants under abiotic constraints, Acta Physiol. Plant, 31: 427-436
  • 20.Ke L., Wang W.Q., Wong T.W.Y., Wong Y.S., Tam N.F.Y., 2003a, Removal of pyrene from contaminated sediments by mangrove microcosms, Chemosphere, 51: 25-34
  • 21.Ke L., Wong T.W.Y., Wong A.H.Y., Wong Y.S., Tam N.F.Y., 2003b, Negative effects of humic acid addition on phytoremediation of pyrene-contaminated sediments by mangrove seedlings, Chemosphere, 52: 1581-1591
  • 22.Ke L., Yu K.S.H., Wong Y.S., Tam N.F.Y., 2005, Spatial and vertical distribution of polycyclic aromatic hydrocarbons in mangrove sediments, Sci. Total Environ., 340: 177- 187
  • 23.Ke L., Bao W., Chen L., Wong Y.S., Tam N.F.Y., 2009, Effects of humic acid on solubility and biodegradation of polycyclic aromatic hydrocarbons in liquid media and mangrove sediment slurries, Chemosphere, 76: 1102-1108
  • 24.Klekowski E.J.Jr., Corredor J.E., Morell J.M., del Castillo C.A., 1994, Petroleum pollution and mutation in mangroves, Mar. Pollut. Bull., 28: 166-169
  • 25.Landis W.G., Matthews G.B., Matthews R.A., Sergeant A., 1994, Application of multivariate techniques to endpoint determination, selection and evaluation in ecological risk assesement, Environ. Toxicol. Chem., 13:1917-1927
  • 26.Ledford H.K., Niyogi K.K., 2005, Siglet oxygen and photo-oxidative stress management in plants and algae, Plant Cell Environ., 28: 1037-1045
  • 27.Li B., Wei J., Wei X., Tang K., Liang Y., Shu K., Wang B., 2008, Effect of sound wave stress on antioxidant enzyme activities and lipid peroxidation of Dendrobium candidum, Colloids Surface B., 63: 269-275
  • 28.Liao Y., Chen G.Z., 2007, Physiological adaptability of three mangrove species to salt stress, Acta Ecologica Sinica, 2: 2208-2214
  • 29.Lin C.C., Kao C.H., 2000, Effect of NaCl stress on H2O2 metabolism in rice leaves, Plant Growth Regul., 30:151-155
  • 30.Liu H., David W., Ye Y., Cui B., Huang Y.H., Colón-Carmona A., Wang Z.H., 2009, An oxidative stress response to polycyclic aromatic hydrocarbon exposure is rapid and complex in Arabidopsis thaliana, Plant Sci., 176: 375-382
  • 31.Liu J.W., Lin F.K., Wang Y., Xu Z., Zhang X., 2002, Effects of PAHs (naphthalene) Pollution on the Physiological Index of Hydrophyte, Journal of East China University of Science and Technology, 28: 520-536 (In Chinese with English summary)
  • 32.Liu Y.Y., Sun H.B., Chen G.Z., Zhao B., Li W.Y., 2007, Eco-physiological responses of Kandelia candel seedlings to polychlorinated biphenyls (PCBs) treatment, Acta Ecologica Sinica 27: 746-754
  • 33.Long E.R., Macdonald D.D., Smith S.L., Calder F.D., 1995, Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments, Environ. Manage., 19: 81-97
  • 34.McCann J.H., Greenberg B.M., Solomon K.R., 2000, The effect of creosote on the growth of an axenic culture of Myriophyllum spicatum L., Aquat. Toxicol., 50: 265-274
  • 35.McCann J.H., Solomon K.R., 2000, The effect of creosote on membrane ion leakage in Myriophyllum spicatum L., Aquat. Toxicol., 50, 275-284
  • 36.Mittler R., 2002, Oxidative stress, antioxidants and stress tolerance, Trends Plant Sci., 7: 405-410
  • 37.Olsen G.H., Carroll M.L., Renaud P.E., Ambrose W.G.Jr., Olssøn R., Carroll J.L., 2007, Benthic community response to petroleum-associated components in Arctic versus temperate marine sediments, Mar. Biol., 151: 2167-2176
  • 38.Parida A., Das A.B., Das P., 2002, NaCI stress causes changes in photosynthetic pigments, proteins, and other metabolic components in the leaves of a true mangrove, Bruguiera parviflora, in hydroponic cultures, J. Plant Biol., 53: 259-267
  • 39.Rodríguez-Ortega M.J., Rodríguez-Ariza A., Gómez-Ariza J.L., Muñoz-Serrano A., López-Barea J., 2009, Multivariate discriminant analysis distinguishes metal- from non metal-related biomarker responses in the clam Chamaelea gallina, Mar. Pollut. Bull., 58:64-71
  • 40.Saradhi P.P., AliaArora A.S., Prasad K.V.S.K., 1995, Proline accumulates in plants exposed to UV radiation and protects them against UV-induced peroxidation, Biochem. Bioph. Res. Co., 209: 1-5
  • 41.Shetty P., Atallah M.T., Shetty K., 2002, Effects of UV treatment on the proline-linked pentose phosphate pathway for phenolics and L-DOPA synthesis in dark germinated Vicia faba, Process Biochem., 37: 1285-1295
  • 42.Singh S., Saxena R., Pandey K., Bhatt K., Sinha S., 2004, Response of antioxidants in sunflower (Helianthus annuus L.) grown on different amendments of tannery sludge: its metal accumulation potential, Chemosphere, 57: 1663-1673
  • 43.Sinha S., Basant A., Malik A., Singh K., 2009, Multivariate modeling of chromium-induced oxidative stress and biochemical changes in plants of Pistia stratiotes L, Ecotoxicology, 18: 555-566
  • 44.Tam N.F.Y., Ke L., Wang X.H., Wong Y.S., 2001, Contamination of polycyclic aromatic hydrocarbons in surface sediments of mangrove swamps, Environ. Pollut. 114: 255-263
  • 45.Tam N.F.Y., 2006, Pollution Studies on Mangroves in Hong Kong and Mainland China, Springer Netherlands
  • 46.Tian Y., Luo Y.R., Zheng T.L., Cai L.Z., Cao X.X., Yan C.L., 2008, Contamination and potential biodegradation of polycyclic aromatic hydrocarbons in mangrove sediments of Xiamen, China, Mar. Pollut. Bull., 56: 1184-1191
  • 47.Wieczorek J.K., Wieczorek Z.J., 2007, Phytotoxicity and accumulation of anthracene applied to the foliage and sandy substrate in lettuce and radish plants, Ecotoxicol. Environ. Saf., 66: 369-377
  • 48.Willekens H., Chamnongpol S., Davey M., Schraudner M., Langebartels C., Van Montaqu M., Inzé D., Van Camp W., 1997, Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants, EMBO J., 16: 4806-4816
  • 49.Wu Y., Chen Y., Yi Y., Shen Z., 2009, Responses to copper by the moss Plagiomnium cuspidatum: Hydrogen peroxide accumulation and the antioxidant defense system, Chemosphere, 74:1260-1265
  • 50.Xin M., Dao-hui L., Yi X., Yuan-yuan W., You-ying T., 2009, Effects of phenanthrene on chemical composition and enzyme activity in fresh tea leaves, Food Chem., 115: 569-573
  • 51.Yong Y.E., Tam N.F.Y., 2007, Effects of used lubricating oil on two mangroves Aegiceras corniculatum and Avicennia marina, J. Environ. Sci., 19: 1355-1360
  • 52.Yu K.S.H., Wong A.H.Y., Yau K.W.Y., Wong Y.S., Tam N.F.Y., 2005a, Natural attenuation, biostimulation and bioaugmentation on biodegradation of polycyclic aromatic hydrocarbons (PAHs) in mangrove sediments, Mar. Pollut. Bull., 51: 1071-1077
  • 53.Yu S.H., Ke L., Wong Y.S., Tam N.F.Y., 2005b, Degradation of polycyclic aromatic hydrocarbons (PAHS) by a bacterial consortium enriched from mangrove sediments, Environ. Int., 31: 149- 154
  • 54.Zhang D.Z., Wang P.H., Zhao H.X., 1990, Determination of the content of free proline in wheat leaves, Plant Phys. Commun., 4: 62-65
  • 55.Zhang J., Cai L., Yuan D., Chen M., 2004, Distribution and sources of polynuclear aromatic hydrocarbons in Mangrove surficial sediments of Deep Bay, China, Mar. Pollut. Bull., 49: 479-486
  • 56.Zhang C.G., Leung K.K., Wong Y.S., Tam N.F.Y., 2007a, Germination, growth and physiological responses of mangrove plant (Bruguiera gymnorrhiza) to lubricating oil pollution, Environ. Exp. Bot., 60: 127-136
  • 57.Zhang F.Q., Wang Y.S., Lou Z.P., Dong J.D., 2007b, Effect of heavy metal stress on antioxidative enzymes and lipid peroxidation in leaves and roots of two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza), Chemosphere, 67: 44-50
  • 58.Zhang L.Z., Wei N., Wu Q.X., Ping M.L., 2007c, Anti-oxidant response of Cucumis sativus L. to fungicide carbendazim, Pestic. BioChem. Phys., 89: 54-59
  • 59.Zhao S.J., Xu C.C., Zou Q., Meng Q.W., 1994, Improvements of method for measurement of malondialdehyde in plant tissues, Plant Phys. Commun., 30: 207-210
  • 60.Zheng G.J., Man B.K.W., Lam J.C.W., Lam M.H.W., Lam P.K.S., 2002, Distribution and sources of polycyclic aromatic hydrocarbons in the sediment of a sub-tropical coastal wetland, Water Res., 36: 1457-1468
  • 61.Zhou H.W., Luan T.G., Zou F., Tam N.F.Y., 2008, Different bacterial groups for biodegradation of three- and four-ring PAHs isolated from a Hong Kong mangrove sediment, J. Hazard. Mater., 152: 1179-1185
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0009-0065
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.