Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The high level of cadmium in the abdominal muscle of the brown shrimp Crangon crangon is due to the serious pollution of the water in the Gulf of Gdańsk. The inhibition of malic enzyme (ME) activity by cadmium, and in consequence the reduced formation of NADPH, could interfere with cellular mechanisms for detoxifying the organism and reducing oxidative stress. The reduced glutathione (GSH) concentration in the abdominal muscle of C. crangon was calculated to be 5.8 mM. The objective of this study was to evaluate the part played by GSH in the effect of cadmium on the activity of NADP-dependent malic enzyme from abdominal muscles of brown shrimps. This enzyme is activated by certain divalent cations (Mg, Mn). The results demonstrate that cadmium inhibits ME activity from shrimp muscle, and that GSH and albumin can reduce this cadmium-inhibited NADP-dependent malic enzyme activity.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
793--805
Opis fizyczny
Bibliogr. 20 poz., wykr.
Twórcy
autor
autor
autor
autor
autor
- Laboratory of Ecotoxicology, Gdańsk University Biological Station, Ornitologów 26, Gdańsk-Sobieszewo 80-680, Poland, skorkows@biotech.ug.gda.pl
Bibliografia
- 1.Biegniewska A., Skorkowski E. F., 1983, Isolation and some properties of malic enzyme from the shrimp abdomen muscle, Comp. Biochem. Phys. B, 74 (3), 627-632. doi:10.1016/0305-0491(83)90240-7
- 2.Biegniewska A., Thebault M.T., Ziętara M., Skorkowski E. F., 1993, Antagonism between cadmium chloride and divalent metal cations in the activation of malic enzyme, Comp. Biochem. Phys. C, 104 (1), 155-158. doi:10.1016/0742-8413(93)90127-7
- 3.Canesi L., Viarengo A., 1997, Age-related differences in glutathione metabolism in mussel tissues (Mytilus edulis L.), Comp. Biochem. Phys. B, 116 (2), 217-221. doi:10.1016/S0305-0491(96)00223-4
- 4.Castro-Gonzalez M. I., Mendez-Armenta M., 2008, Heavy metals: Implications associated to fish consumption, Environ. Toxicol. Phar., 26 (3), 263-271. doi:10.1016/j.etap.2008.06.001
- 5.Gil F., Pla A., 2001, Biomarkers as biological indicators of xenobiotic exposure, J. Appl. Toxicol., 21 (4), 245-255. doi:10.1002/jat.769
- 6.Griffith O.W., 1999, Biologic and pharmacologic regulation of mammalian glutathione synthesis, Free Radical Bio. Med., 27 (9-10), 922-935. doi:10.1016/S0891-5849(99)00176-8
- 7.Kehrer J.P., Lund L.G., 1994, Cellular reducing equivalents and oxidative stress, Free Radical Bio. Med., 17 (1), 65-75. doi:10.1016/0891-5849(94)90008-6
- 8.Lange A., Ausseil O., Segner H., 2002, Alterations of tissue glutathione levels and metallothionein mRNA in rainbow trout during single and combined exposure to cadmium and zinc, Comp. Biochem. Phys. C, 131 (3), 231-243. doi:10.1016/S1532-0456(02)00010-8
- 9.Liu Y., Liu J., Iszard M.B., Andrews G.K., Palmiter R.D., Klaassen C.D., 1995, Transgenic mice that overexpress metallothionein-I are protected from cadmium lethality and hepatotoxicity, Toxicol. Appl. Pharm., 135 (2), 222-228. doi:10.1006/taap.1995.1227
- 10.Mommsen T.P., French C. J., Hochachka P.W., 1980, Sites and patterns of protein and amino acid utilization during the spawning migration of salmon, Can. J. Zool., 58 (10), 1785-1799. doi:10.1139/z80-246
- 11.Mommsen T.P., 2004, Salmon spawning migration and muscle protein metabolism: the August Krogh principle at work, Comp. Biochem. Phys. B, 139 (3), 383-400. doi:10.1016/j.cbpc.2004.09.018
- 12.Napierska D., Thebault M.T., Pempkowiak J., Skorkowski E. F., 1997, Comparison of short-term cadmium poisoning in the shrimp Crangon crangon from the Baltic Sea and the shrimp Palaemon serratus from Atlantic Ocean with cadmium bioaccumulation and malic enzyme activity in abdomen muscle, Oceanologia, 39 (2), 137-146.
- 13.Napierska D., Radłowska M., 1998, Stress proteins induced by cadmium in the abdominal muscle of the shrimp Crangon crangon, Oceanologia, 40 (2), 157-162.
- 14.Skorkowski E.F., Biegniewska A., Aleksandrowicz Z., Świerczyński J., 1980, Comparative studies on NADP-linked dehydrogenases in some tissues of fish and crustaceans, Comp. Biochem. Phys. B, 65 (3), 559-562. doi:10.1016/0305-0491(80)90312-0
- 15.Skorkowski E. F., Storey K.B., 1987, Affinity chromatography on 2′,5′-ADP- Sepharose 4B for purification of malic enzyme from crustacean muscle, J. Chromatogr., 389, 427-432. doi:10.1016/S0021-9673(01)94454-1
- 16.Skorkowski E.F., 1988, Mitochondrial malic enzyme from crustacean and fish muscle, Comp. Biochem. Phys. B, 90 (1), 19-24. doi:10.1016/0305-0491(88)90031-4
- 17.Spector T., 1978, Refinement of the Coomassie Blue method of protein quantitation. A simple and linear spectrophotometric assay for 0.5 to 50 μg of protein, Anal. Biochem., 86 (1), 142-146. doi:10.1016/0003-2697(78)90327-5
- 18.Viarengo A., Canesi L., Pertica M., Livingstone D.R., 1991, Seasonal variations in the antioxidant defense systems and lipid peroxidation in the digestive gland of mussels, Comp. Biochem. Phys. C, 100 (1-2), 187-190. doi:10.1016/0742-8413(91)90151-I
- 19.Waalkes M.P., 2000, Cadmium carcinogenesis in review, J. Inorg. Biochem., 79 (1-4), 241-244. doi:10.1016/S0162-0134(00)00009-X
- 20.Waisberg M., Joseph P., Hale B., Beyersmann D., 2003, Molecular and cellular mechanisms of cadmium carcinogenesis, Toxicology, 192 (2-3), 95-117. doi:10.1016/S0300-483X(03)00305-6
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0009-0037