PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Processes regulating pCO2 in the surface waters of the central eastern Gotland Sea: a model study

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work presents a one-dimensional simulation of the seasonal changes in CO2 partial pressure (pCO2). The results of the model were constrained using data from observations, which improved the model's ability to estimate nitrogen fixation in the central Baltic Sea and allowed the impact of nitrogen fixation on the ecological state of the Baltic Sea to be studied. The model used here is the public domain water-column model GOTM (General Ocean Turbulence Model), which in this study was coupled with a modifed Baltic Sea ecosystem model, ERGOM (The Baltic Sea Research Institute's ecosystem model). To estimate nitrogen fixation rates in the Gotland Sea, the ERGOM model was modified by including an additional cyanobacteria group able to fix nitrogen from March to June. Furthermore, the model was extended by a simple CO2 cycle. Variable C:P and N:P ratios, controlled by phosphate concentrations in ambient water, were used to represent cyanobacteria, detritus and sediment detritus. This approach improved the model's ability to reproduce sea-surface phosphate and pCO2 dynamics. The resulting nitrogen fixation rates in 2005 for the two simulations, with and without the additional cyanobacteria group, were 259 and 278 mmol N m-2 year-1respectively.
Czasopismo
Rocznik
Strony
745--770
Opis fizyczny
Bibliogr. 39 poz., tab., wykr.
Twórcy
autor
autor
autor
autor
Bibliografia
  • 1.BACC Author Team, 2008, Annexes, [in:] Assessment of climate change for the Baltic Sea Basin, Springer, New York, 379-398.
  • 2.Burchard H., 2002, Applied turbulence modelling in marine waters, Lect. Notes Earth Sci., Vol. 100, Springer, Berlin, Heidelberg, New York, 215 pp.
  • 3.Burchard H., Bolding K., Kühn W., Meister A., Neumann T., Umlauf L., 2006, Description of a flexible and extendable physical-biogeochemical model system for the water column, J. Marine Syst., 61 (3-4), 180-211.
  • 4.Degerholm J., Gundersen K., Bergman B., Söderbäck E., 2006, Phosphoruslimited growth dynamics in two Baltic Sea cyanobacteria, Nodularia sp. and Aphanizomenon sp., FEMS Microbiol. Ecol., 58 (3), 323-332. doi:10.1111/j.1574-6941.2006.00180.x
  • 5.Dickson A., Millero F. J., 1987, A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media, Deep-Sea Res., 34 (10), 1733-1743. doi:10.1016/0198-0149(87)90021-5
  • 6.DOE, 1994, Handbook of methods for the analysis of the various parameters of the carbon dioxide system in sea water; version 2.0, A.G. Dickson & C. Goyet (eds.), ORNL/CDIAC-74.
  • 7.Fennel W., Neumann T., 1996, The mesoscale variability of nutrients and plankton as seen in a coupled model, Ger. J. Hydrogr., 48 (1), 49-71. doi:10.1007/BF02794052
  • 8.HELCOM, 2003, The Baltic marine environment 1999-2002, Baltic Sea Environ. Proc., 87, 47 pp.
  • 9.Hjalmarsson S., Wesslander K., Anderson L.G., Omstedt A., Perttilä M., Mintrop L., 2008, Distribution, long-term development and mass balance calculation of total alkalinity in the baltic sea, Cont. Shelf Res., 28 (4-5), 593-601. doi:10.1016/j.csr.2007.11.010
  • 10.Howarth R., Marino R., Lane J., Cole J., 1988, Nitrogen fixation in freshwater, estuarine, and marine ecosystems. 1. Biogeochemical controls, Limnol. Oceanogr., 33 (4 pt. 2), 669-687. doi:10.4319/lo.1988.33.4_part_2.0669
  • 11.ICES, 2009, ICES dataset on ocean hydrography, The International Council for the Exploration of the Sea, Copenhagen.
  • 12.Janssen F., Neumann T., Schmidt M., 2004, Inter-annual variability in cyanobacteria blooms in the Baltic Sea controlled by wintertime hydrographic conditions, Mar. Ecol.-Prog. Ser., 275, 59-68. doi:10.3354/meps275059
  • 13.Kahru M., Savchuk O., Elmgren R., 2007, Satellite measurements of cyanobacterial bloom frequency in the Baltic Sea: interannual and spatial variability, Mar. Ecol.-Prog. Ser., 343, 15-23. doi:10.3354/meps06943
  • 14.Kuznetsov I., Neumann T., Burchard H., 2008, Model study on the ecosystem impact of a variable C:N:P ratio for cyanobacteria in the Baltic Proper, Ecol. Model., 219 (1-2), 107-114. doi:10.1016/j.ecolmodel.2008.08.002
  • 15.Larsson U., Hajdu S., Walve J., Elgren R., 2001, Baltic Sea nitrogen fixation estimated from the summer increase in upper mixed layer total nitrogen, Limnol. Oceanogr., 46 (4), 811-820. doi:10.4319/lo.2001.46.4.0811
  • 16.Leinweber A., 2002, Saisonaler Kohlenstoffkreislauf im Oberflächenwasser der zentralen Ostsee: numerische Prozessstudien zur Simulation des CO2- Partialdrucks, Ph.D. thesis, Rostock Univ.
  • 17.Liss P., Merlivat L., 1986, Air-sea gas exchange rates: introduction and synthesis, [in:] The role of air-sea exchange in geochemical cycling, P. Buat-Ménard, NATO ASI Ser., Vol. 185, Reidel, Dordrecht, 113-127.
  • 18.Muller-Navarra D.C., Brett M.T., Liston A.M., Goldman C.R., 2000, A highly unsaturated fatty acid carbon transfer between primary producers and consumers, Nature, 403 (6765), 74-76, 10.1038/47469.
  • 19.Nausch M., Nausch G., Wasmund N., 2004, Phosphorus dynamics during the transition from nitrogen to phosphate limitation in the central Baltic Sea, Mar. Ecol.-Prog. Ser., 266, 15-25. doi:10.3354/meps266015
  • 20.Neumann T., Fennel W., Kremp C., 2002, Experimental simulations with an ecosystem model of the Baltic Sea: A nutrient load reduction experiment, Global Biogeochem. Cy., 16 (3), 450. doi:10.1029/2001GB001450
  • 21.Neumann T., Schernewski G., 2005, An ecological model evaluation of two nutrient abatement strategies for the Baltic Sea, J. Marine Syst., 56 (1-2), 195-206. doi:10.1016/j.jmarsys.2004.10.002
  • 22.Neumann T., Schernewski G., 2008, Eutrophication in the Baltic Sea and shifts in nitrogen fixation analyzed with a 3D ecosystem model, J. Marine Syst., 74 (1-2), 592-602. doi:10.1016/j.jmarsys.2008.05.003
  • 23.Omstedt A., Gustafsson E., Wesslander K., 2009, Modelling the uptake and release of carbon dioxide in the Baltic Sea surface water, Cont. Shelf Res., 29 (7), 870-885. doi:10.1016/j.csr.2009.01.006
  • 24.Persson A., Grazzini F., 2005, User guide to ECMWF forecast products, Meteorol. Bull., M3.2, 153 pp.
  • 25.Rahm L., Jonsson A., Wulff F., 2000, Nitrogen fixation in the Baltic Proper: an empirical study, J. Marine Syst., 25 (3-4), 239-248. doi:10.1016/S0924-7963(00)00018-X
  • 26.Savchuk O., Wulff F., 1999, Modelling regional and large-scale response of Baltic Sea ecosystems to nutrient load reductions, Hydrobiologia, 393 (0), 35-43. doi:10.1023/A:1003529531198
  • 27.Schernewski G., Neumann T., 2005, The trophic state of the Baltic Sea a century ago: a model simulation study, J. Marine Syst., 53 (1-4), 109-124. doi:10.1016/j.jmarsys.2004.03.007
  • 28.Schneider B., 2011, The CO2 system of the Baltic Sea: Biogeochemical control and impact of anthropogenic CO2, [in:] Global change and baltic coastal zones, G. Schernewski, J. Hofstede & T. Neumann, (eds.), Coastal Res. Lib., Vol. 1, Springer, Dordrecht, 33-50.
  • 29.Schneider B., Kaitala S., Maunula P., 2006, Identification and quantification of plankton bloom events in the Baltic Sea by continuous pCO2 and chlorophyll a measurements on a cargo ship, J.Marine Syst., 59 (3-4), 238-248. doi:10.1016/j.jmarsys.2005.11.003
  • 30.Schneider B., Kaitala S., Raateoja M., Sadkowiak B., 2009a, A nitrogen fixation estimate for the Baltic Sea based on continuous pCO2 measurements on a cargo ship and total nitrogen data, Cont. Shelf Res., 29 (11-12), 1535-1540. doi:10.1016/j.csr.2009.04.001
  • 31.Schneider B., Nausch G., Nagel K., Wasmund N., 2003, The surface water CO2 budget for the Baltic Proper: a new way to determine nitrogen fixation, J. Marine Syst., 42 (1-2), 53-64. doi:10.1016/S0924-7963(03)00064-2
  • 32.Schneider B., Nausch G., Pohl C., 2009b, Mineralization of organic matter and nitrogen transformations in the Gotland Sea deep water, Deep-Sea Res., (in press).
  • 33.Stigebrandt A., Wulff F., 1987, A model for the dynamics of nutrients and oxygen in the Baltic Proper, J. Mar. Res., 45 (3), 729-759. doi:10.1357/002224087788326812
  • 34.Tyrrell T., Schneider B., Charalampopoulou A., Riebesell U., 2008, Coccolithophores and calcite saturation state in the Baltic and Black Seas, Biogeosciences, 5 (2), 485-494. doi:10.5194/bg-5-485-2008
  • 35.Umlauf L., Burchard H., 2003, A generic length-scale equation for geophysical turbulence models, J. Mar. Res., 61 (2), 235-265. doi:10.1357/002224003322005087
  • 36.Umlauf L., Burchard H., 2005, Second-order turbulence closure models for geophysical boundary layers. A review of recent work, Cont. Shelf Res., 25 (7-8), 795-827. doi:10.1016/j.csr.2004.08.004
  • 37.Wasmund N., 1997, Occurrence of cyanobacterial blooms in the Baltic Sea in relation to environmental conditions, Int. Rev. Ges. Hydrobio., 82 (2), 169-184. doi:10.1002/iroh.19970820205
  • 38.Wasmund N., Voss M., Lochte K., 2001, Evidence of nitrogen fixation by nonheterocystous cyanobacteria in the Baltic Sea and re-calculation of a budget of nitrogen fixation, Mar. Ecol.-Prog. Ser., 214, 1-14. doi:10.3354/meps214001
  • 39.Weiss R., 1974, Carbon dioxide in water and seawater: the solubility of a non-ideal gas, Mar. Chem., 2 (3), 203-215. doi:10.1016/0304-4203(74)90015-2
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0009-0035
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.