PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

PO4 release at the sediment surface under anoxic conditions: a contribution to the eutrophication of the Baltic Sea?

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The vertical profiles of phosphate, total CO2 and oxygen/hydrogen sulphide were determined in the deep water of the Gotland Sea during March 2003 to July 2006 with a temporal resolution of 2-3 months. This time span included the shift from anoxic to oxic conditions resulting from a water renewal event, as well as the transition back to anoxic waters during the subsequent two-year stagnation period. The data from depths below 150 m were used to identify and quantify phosphate release and removal processes. The relationship between the total CO_2 generated by mineralization (CT, min) and the PO_4 concentrations indicated that the initial decrease in the phosphate concentrations after the inflow of oxygen-rich water was mainly a dilution effect. Only about one third of the PO_4 removal was a consequence of the precipitation of insoluble iron-3-hydroxo-phosphates (Fe-P), which occurred slowly at the sediment surface under oxic conditions. From the CT, min/PO4 ratios it was also concluded that the formation of Fe-P was reversed during the later phase of the stagnation, when the redoxcline approached a depth of 150 m. A phosphate mass balance was performed for four deep water sub-layers in order to quantify the dissolution of Fe-P during the stagnation period and thus to estimate the amount of Fe-P deposited during the last inflow of oxygen-rich water. A value of about 50 mmol-P m-2 was found, which refers to the specific biogeochemical conditions during the change from anoxic to oxic conditions that preceded the stagnation period.
Słowa kluczowe
Czasopismo
Rocznik
Strony
415--429
Opis fizyczny
Bibliogr. 15 poz., tab., wykr.
Twórcy
autor
Bibliografia
  • 1.Conley J.C., Björck S., Bonsdorff E., Carstensen J., Destouni G., Gustafsson B.G., Hietanen S., Kortekaas M., Kuosa H., Meier H.E.M., Mueller-Karulis B., Nordberg K., Norkko A., Nuernberg G., Pitkaenen H., Rabalais N.N., Rosenberg R., Savchuk O.P., Slomp C., Voss M., Wulff F., Zillen L., 2009, Hypoxia-related processes in the Baltic Sea, Environ. Sci. Technol., 43 (10), 3412-3420. doi:10.1021/es802762a
  • 2.Conley J.C., Humborg C., Rahm L., Savchuk O.P., Wulff F., 2002, Hypoxia in the Baltic Sea and basin-scale changes in the phosphorus chemistry, Environ. Sci. Technol., 36 (24), 5315-5320. doi:10.1021/es025763w
  • 3.Gustafsson B.G., Stigebrandt A., 2007, Dynamics of nutrients and oxygen/hydrogen sulphide in the Baltic Sea deep water, J. Geophys. Res., 112, G02023, doi: 10.1029/2006JG000304. doi:10.1029/2006JG000304
  • 4.HELCOM, 2001, Environment of the Baltic Sea area, 1994-1998, Fourth Periodic Assessment of the State of the Baltic Marine Area, 1994-1998, Baltic Sea Environ. Proc. No. 82A, 23 pp.
  • 5.Johnson K.M., Wills K.D., Buttler D.B., Johnson W.K., Wong C. S., 1993, Coulometric total carbon dioxide analysis for marine studies: maximizing the performance of an automated gas extraction system and coulometric detector, Mar. Chem., 44 (2-4), 167-187. doi:10.1016/0304-4203(93)90201-X
  • 6.Larsson U., Hajdu S., Walve J., Elmgren R., 2001, Baltic Sea nitrogen fixation estimated from the summer increase in the upper mixed layer total nitrogen, Limnol. Oceanogr., 46 (4), 811-820. doi:10.4319/lo.2001.46.4.0811
  • 7.Mort H.P., Slomp C.P., Gustafsson B.G., Andersen T. J., 2010, Phosphorus recycling and burial in Baltic Sea sediments with contrasting redox conditions, Geochim. Cosmochim. Acta, 74 (4), 1350-1362. doi:10.1016/j.gca.2009.11.016
  • 8.Nausch G., Nehring D., Nagel K., 2008, Nutrient concentrations, trends and their relation to eutrophication, [in:] State and evolution of the Baltic Sea, 1952 -2005, R. Feistel, G. Nausch & N. Wasmund (eds.), Wiley, New York, 337 -366.
  • 9.Redfield A.C., Ketchum B.H., Richards F.A., 1963, The influence of organisms on the composition of sea water, [in:] The sea, Vol. 2, M.N. Hill (ed.), Wiley, New York, 26-77.
  • 10.Savchuk O.P., Wulff F., Hille S., Humborg C., Pollehne F., 2008, The Baltic Sea a century ago - a reconstruction from model sedimentations verified by observations, J. Marine Syst., 74 (1-2), 485-494. doi:10.1016/j.jmarsys.2008.03.008
  • 11.Schneider B., Kaitala S., Raateoja M., Sadkowiak B., 2009, A nitrogen fixation estimate for the Baltic Sea based on continuous pCO2 measurements on a cargo ship and total nitrogen data, Cont. Shelf Res., 29 (11-12), 1535-1540. doi:10.1016/j.csr.2009.04.001
  • 12.Schneider B., Kuss J., 2004, Past and present productivity of the Baltic Sea as inferred from pCO2 data, Cont. Shelf Res., 24 (15), 1611-1622, doi: 10.1016/j.csr.2004.06.023. doi:10.1016/j.csr.2004.06.023
  • 13.Schneider B., Nausch G., Pohl C., 2010, Mineralization of organic matter and nitrogen transformations in the Gotland Sea deep water, Mar. Chem., 119 (1-4), 153-161. doi:10.1016/j.marchem.2010.02.004
  • 14.Seifert T., Tauber F., Kayser B., 2001, A high resolution spherical grid topography of the Baltic Sea, Baltic Sea Science Congress, Stockholm 25-29 November 2001, Poster No. 147, Abstr. Vol., 2nd edn., Stockholm Mar. Res. Centre, Stockholm Univ.
  • 15.Turnewitsch R., Pohl C., 2010, An estimate of the efficiency of the iron- and manganese-driven dissolved inorganic phosphorus trap at an oxic/euxinic water column redoxcline, Global Biogeochem. Cy., 24, GB4025, 15 pp.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0009-0027
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.