PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The role of the spatial resolution of a three-dimensional hydrodynamic model for marine transport risk assessment

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper addresses the sensitivity of a novel method for quantifying the environmental risks associated with the current-driven transport of adverse impacts released from offshore sources (e.g. ship traffic) with respect to the spatial resolution of the underlying hydrodynamic model. The risk is evaluated as the probability of particles released in different sea areas hitting the coast and in terms of the time after which the hit occurs (particle age) on the basis of a statistical analysis of large sets of 10-day long Lagrangian trajectories calculated for 1987-1991 for the Gulf of Finland, the Baltic Sea. The relevant 2D maps are calculated using the OAAS model with spatial resolutions of 2, 1 and 0.5 nautical miles (nm) and with identical initial, boundary and forcing conditions from the Rossby Centre 3D hydrodynamic model (RCO, Swedish Meteorological and Hydrological Institute). The spatially averaged values of the probability and particle age display hardly any dependence on the resolution. They both reach almost identical stationary levels (0.67-0.69 and ca 5.3 days respectively) after a few years of simulations. Also, the spatial distributions of the relevant fields are qualitatively similar for all resolutions. In contrast, the optimum locations for fairways depend substantially on the resolution, whereas the results for the 2 nm model differ considerably from those obtained using finer-resolution models. It is concluded that eddy-permitting models with a grid step exceeding half the local baroclinic Rossby radius are suitable for a quick check of whether or not any potential gain from this method is feasible, whereas higher-resolution simulations with eddy-resolving models are necessary for detailed planning. The asymptotic values of the average probability and particle age are suggested as an indicator of the potential gain from the method in question and also as a new measure of the vulnerability of the nearshore of water bodies to offshore traffic accidents.
Czasopismo
Rocznik
Strony
309--334
Opis fizyczny
Bibliogr. 34 poz., mapki, wykr.
Twórcy
autor
autor
autor
autor
  • Institute of Cybernetics, Tallinn University of Technology, Akadeemia tee 21, Tallinn 12618, Estonia, soomere@cs.ioc.ee
Bibliografia
  • 1.Albretsen J., Roed L.P., 2010, Decadal simulations of mesoscale structures in the northern North Sea/Skagerrak using two ocean models, Ocean Dynam., 60 (4), 933-955. doi:10.1007/s10236-010-0296-0
  • 2.Alenius P., Nekrasov A., Myrberg K., 2003, Variability of the baroclinic Rossby radius in the Gulf of Finland, Cont. Shelf Res., 23 (6), 563-573.doi:10.1016/S0278-4343(03)00004-9
  • 3.Andrejev O., Myrberg K., Alenius P., Lundberg P.A., 2004a, Mean circulation and water exchange in the Gulf of Finland - a study based on three-dimensional modelling, Boreal nviron. Res., 9 (1), 1-16.
  • 4.Andrejev O., Myrberg K., Lundberg P.A., 2004b, Age and renewal time of water masses in a semi-enclosed basin - application to the Gulf of Finland, Tellus A, 56 (5), 548-558. doi:10.1111/j.1600-0870.2004.00067.x
  • 5.Andrejev O., Sokolov A., 1989, Numerical modelling of the water dynamics and passive pollutant transport in the Neva inlet, Meteorol. Hydrol., 12, 75-85, (in Russian).
  • 6.Andrejev O., Sokolov A., 1990, 3D baroclinic hydrodynamic model and its applications to Skagerrak circulation modelling, Proc. 17th Conf. Baltic Oceanogr., Norrköping, Sweden, 38-46.
  • 7.Andrejev O., Sokolov A., Soomere T., Värv R., Viikmäe B., 2010, The use of high-resolution bathymetry for circulation modelling in the Gulf of Finland, Estonian J. Eng., 16 (3), 187-210. doi:10.3176/eng.2010.3.01
  • 8.Bergström S., Carlsson B., 1994, River runoff to the Baltic Sea: 1950-1990, Ambio, 23 (4-5), 280-287.
  • 9.Blanke B., Raynard S., 1997, Kinematics of the Pacific Equatorial Undercurrent: an Eulerian and Lagrangian approach from GCM results, J. Phys. Oceanogr., 27 (6), 1038-1053. doi:10.1175/1520-0485(1997)027<1038:KOTPEU>2.0.CO;2
  • 10.de Vries P., Döös K., 2001, Calculating Lagrangian trajectories using time-dependent velocity fields, J. Atmos. Ocean. Tech., 18 (6), 1092-1101. doi:10.1175/1520-0426(2001)018<1092:CLTUTD>2.0.CO;2
  • 11.Döös K., 1995, Inter-ocean exchange of water masses, J. Geophys. Res.-Oceans, 100 (C7), 13 499-13 514.
  • 12.Eide M. S., Endresen O., Brett P.O., Ervik J.L., Roang K., 2007, Intelligent ship traffic monitoring for oil spill prevention: risk based decision support building on AIS, Mar. Pollut. Bull., 54 (2), 145-148. doi:10.1016/j.marpolbul.2006.11.004 PMid:17178131
  • 13.Engqvist A., Döös K., Andrejev O., 2006, Modeling water exchange and contaminant transport through a Baltic coastal region, Ambio, 35 (6), 435-447.doi:10.1579/0044-7447(2006)35[435:MWEACT]2.0.CO;2
  • 14.Gästgifvars M., Lauri H., Sarkanen A.-K., Myrberg K., Andrejev O., Ambjörn C., 2006, Modelling surface drifting of buoys during a rapidly-moving weather front in the Gulf of Finland, Baltic Sea, Estuar. Coast. Shelf Sci., 70 (4), 567-576. doi:10.1016/j.ecss.2006.06.010
  • 15.Havens H., Luther M.E., Meyers S.D., Heil C.A., 2010, Lagrangian particle tracking of a toxic dinoflagellate bloom within the Tampa Bay estuary, Mar. Pollut. Bull., 60 (12), 2233-2241. doi:10.1016/j.marpolbul.2010.08.013 PMid:20825953
  • 16.HELCOM, 2009, Ensuring safe shipping in the Baltic, M. Stankiewicz & N. Vlasov (eds.), Helsinki Comm., Helsinki, 18 pp.
  • 17.Kachel M. J., 2008, Particularly sensitive sea areas, Hamburg Stud. Marit. Aff. Vol. 13, Springer, Berlin, 376 pp. doi:10.1007/978-3-540-78779-2
  • 18.Kokkonen T., Ihaksi T., Jolma A., Kuikka S., 2010, Dynamic mapping of nature values to support prioritization of coastal oil combating, Environ. Modell. Softw., 25 (2), 248-257. doi:10.1016/j.envsoft.2009.07.017
  • 19.Kurennoy D., Soomere T., Parnell K.E., 2009, Variability in the properties of wakes generated by high-speed ferries, J. Coastal Res., 56 (Spec. Iss.), 519-523.
  • 20.Lehmann A., 1995, A three-dimensional baroclinic eddy-resolving model of the Baltic Sea, Tellus A, 47 (5), 1013-1031. doi:10.1034/j.1600-0870.1995.00206.x
  • 21.Lehmann M.P., Sorg°ard E., 2000, Consequence model for ship accidents, ESREL 2000, SARS and SRA-Europe Annual Conf. 17 May 2000, Edinburgh, UK.
  • 22.Leppäranta M., Myrberg K., 2009, Physical oceanography of the Baltic Sea, Springer Praxis, Berlin, Heidelberg, New York, 378 pp.
  • 23.Meier H.E.M., Döscher R., Faxéen T., 2003, A multiprocessor coupled ice-ocean model for the Baltic Sea: application to salt inflow, J. Geophys. Res., 108 (C8), 3273. doi:10.1029/2000JC000521
  • 24.Myrberg K., Ryabchenko V., Isaev A., Vankevich R., Andrejev O., Bendtsen J., Erichsen A., Funkquist L., Inkala A., Neelov I., Rasmus K., Rodriguez Medina M., Raudsepp U., Passenko J., Söderkvist J., Sokolov A., Kuosa H., Anderson T.R., Lehmann A., Skogen M.D., 2010, Validation of three-dimensional hydrodynamic models in the Gulf of Finland based on a statistical analysis of a six-model ensemble, Boreal Environ. Res., 15 (5), 453-479.
  • 25.Parnell K.E., Delpeche N., Didenkulova I., Dolphin T., Erm A., Kask A., Kelpšaitė L., Kurennoy D., Quak E., Räämet A., Soomere T., Terentjeva A., Torsvik T., Zaitseva-Pärnaste I., 2008, Far-field vessel wakes in Tallinn Bay, Estonian J. Eng., 14 (4), 273-302. doi:10.3176/eng.2008.4.01
  • 26.Samuelsson P., Jones C.G.,Willéen U., Ullerstig A., Gollvik S., Hansson U., Jansson C., Kjellström E., Nikulin G., Wyser K., 2011, The Rossby Centre Regional Climate Model RCA3: model description and performance, Tellus A, 63 (1), 4-23. doi:10.1111/j.1600-0870.2010.00478.x
  • 27.Seifert T., Tauber F., Kayser B., 2001, A high resolution spherical grid topography of the Baltic Sea, Baltic Sea Science Congress, Stockholm 25-29 November 2001, Poster No. 147, Abstr. Vol., 2nd edn., [http://www.io-warnemuende. de/iowtopo].
  • 28.Soomere T., Andrejev O., Sokolov A., Myrberg K., 2011a, The use of Lagrangian trajectories for identification the environmentally safe fairway, Mar. Pollut. Bull., 63. doi: 10.1016/j.marpolbul.2011.04.041
  • 29.Soomere T., Berezovski M., Quak E., Viikmäe B., 2011b, Modeling environment-ally friendly fairways in elongated basins using Lagrangian trajectories: a case study for the Gulf of Finland, the Baltic Sea, Ocean Dynam., 61. doi: 10.1007/s10236-011-0439-y
  • 30.Soomere T., Delpeche N., Viikmäe B., Quak E., Meier H. E.M., Döös K., 2011c, Patterns of current-induced transport in the surface layer of the Gulf of Finland, Boreal Environ. Res., 16 (Suppl. A), 49-63.
  • 31.Soomere T., Myrberg K., Leppäranta M., Nekrasov A., 2008, The progress in knowledge of physical oceanography of the Gulf of Finland: a review for 1997 -2007, Oceanologia, 50 (3), 287-362.
  • 32.Soomere T., Quak E., 2007, On the potential of reducing coastal pollution by a proper choice of the fairway, J. Coastal Res., 50 (Spec. Iss.), 678-682.
  • 33.Soomere T., Viikmäe B., Delpeche N., Myrberg K., 2010, Towards identification of areas of reduced risk in the Gulf of Finland, the Baltic Sea, Proc. Estonian Acad. Sci., 59 (2), 156-165. doi:10.3176/proc.2010.2.15
  • 34.Viikmäe B., Soomere T., Viidebaum M., Berezovski A., 2010, Temporal scales for transport patterns in the Gulf of Finland, Estonian J. Eng., 16 (3), 211-227. doi:10.3176/eng.2010.3.02
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0009-0023
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.