PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Quality assessment of atmospheric surface fields over the Baltic Sea from an ensemble of regional climate model simulations with respect to ocean dynamics

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Climate model results for the Baltic Sea region from an ensemble of eight simulations using the Rossby Centre Atmosphere model version 3 (RCA3) driven with lateral boundary data from global climate models (GCMs) are compared with results from a downscaled ERA40 simulation and gridded observations from 1980-2006. The results showed that data from RCA3 scenario simulations should not be used as forcing for Baltic Sea models in climate change impact studies because biases of the control climate significantly affect the simulated changes of future projections. For instance, biases of the sea ice cover in RCA3 in the present climate affect the sensitivity of the model's response to changing climate due to the ice-albedo feedback. From the large ensemble of available RCA3 scenario simulations two GCMs with good performance in downscaling experiments during the control period 1980-2006 were selected. In this study, only the quality of atmospheric surface fields over the Baltic Sea was chosen as a selection criterion. For the greenhouse gas emission scenario A1B two transient simulations for 1961-2100 driven by these two GCMs were performed using the regional, fully coupled atmosphere-ice-ocean model RCAO. It was shown that RCAO has the potential to improve the results in downscaling experiments driven by GCMs considerably, because sea surface temperatures and sea ice concentrations are calculated more realistically with RCAO than when RCA3 has been forced with surface boundary data from GCMs. For instance, the seasonal 2 m air temperature cycle is closer to observations in RCAO than in RCA3 downscaling simulations. However, the parameterizations of air-sea fluxes in RCAO need to be improved.
Czasopismo
Rocznik
Strony
193--227
Opis fizyczny
Bibliogr. 36 poz., fot., tab., wykr.
Twórcy
autor
autor
autor
autor
autor
  • Swedish Meteorological and Hydrological Institute, Research Department, Norrköping 60176, Sweden, markus.meier@smhi.se
Bibliografia
  • 1.BACC - BALTEX Assessment of Climate Change, 2008, Assessment of climate change for the Baltic Sea basin, The BACC Author Team, Reg. Clim. Stud. Ser., Springer, Berlin, Heidelberg, 474 pp.
  • 2.Brasseur O., 2001, Development and application of a physical approach to estimating wind gusts, Mon. Weather Rev., 129 (1), 5-25. doi:10.1175/1520-0493(2001)129<0005:DAAOAP>2.0.CO;2
  • 3.Bumke K., Hasse L., 1989, An analysis scheme for the determination of true surface winds at sea from ship synoptic wind and pressure observations, Bound.-Lay. Meteorol., 47 (1-4), 295-308. doi:10.1007/BF00122335
  • 4.Davis F.K., Newstein H., 1968, The variation of gust factors with mean wind speed and with height, J. Appl. Meteorol., 7 (3), 372-378. doi:10.1175/1520-0450(1968)007<0372:TVOGFW>2.0.CO;2
  • 5.Döscher R., Willén U., Jones C., Rutgersson A., Meier H.E.M., Hansson U., Graham L.P., 2002, The development of the regional coupled ocean-atmosphere model RCAO, Boreal Environ. Res., 7, 183-192.
  • 6.Döscher R., Wyser K., Meier H. E. M., Qian M., Redler R., 2010, Quantifying Arctic contributions to climate predictability in a regional coupled ocean-iceatmosphere model, Clim. Dynam., 34 (7-8), 1157-1176. doi:10.1007/s00382-009-0567-y
  • 7.Gustafsson B.G., Andersson H.C., 2001, Modeling the exchange of the Baltic Sea from the meridional atmospheric pressure difference across the North Sea, J. Geophys. Res., 106 (C9), 19731-19744. doi:10.1029/2000JC000593
  • 8.Hay L.E., Wilby R. L., Leavesley G.H., 2000, A comparison of delta change and downscaled GCM scenarios for three mountainous basins in the United States, J. Am. Water Resour. As., 36 (2), 387-398. doi:10.1111/j.1752-1688.2000.tb04276.x
  • 9.Höglund A., Meier H.E.M., Broman B., Kriezi E., 2009, Validation and correction of regionalised ERA-40 wind fields over the Baltic Sea using the Rossby Centre Atmosphere model RCA3.0., Rap. Oceanogr. No. 97, SMHI, Norrköping, 29 pp.
  • 10.Jones C.G., Willén U., Ullerstig A., Hansson U., 2004, The Rossby Centre regional atmospheric climate model (RCA). Part I: Model climatology and performance characteristics for present climate over Europe, AMBIO, 33 (4-5), 199-210. PMid:15264598
  • 11.Kauker F., Meier H.E.M., 2003, Modeling decadal variability of the Baltic Sea: 1. Reconstructing atmospheric surface data for the period 1902-1998, J. Geophys. Res., 108 (C8), 3267, doi: 10.1029/2003JC001797. doi:10.1029/2003JC001797
  • 12.Kjellström, E., Döscher R., Meier H.E.M., 2005, Atmospheric response to different sea surface temperatures in the Baltic Sea: coupled versus uncoupled regional climate model experiments, Nord. Hydrol., 36 (4-5), 397-409.
  • 13.Kjellström E., Lind P., 2009, Changes in the water budget in the Baltic Sea drainage basin in future warmer climates as simulated by the regional climate model RCA3, Boreal Environ. Res., 14 (1), 114-124.
  • 14.Kjellström E., Nikulin G., Hansson U., Strandberg G., Ullerstig A., 2011, 21st century changes in the European climate: uncertainties derived from an ensemble of regional climate model simulations, Tellus A, 63 (1), 24-40. doi:10.1111/j.1600-0870.2010.00475.x
  • 15.Lind P., Kjellström E., 2009, Water budget in the Baltic Sea drainage basin: evolution of simulated fluxes in a regional climate model, Boreal Environ Res., 14 (1), 56-67.
  • 16.Ljungemyr P., Gustafsson N., Omstedt A., 1996, Parameterization of lake thermodynamics in a high resolution weather forecasting model, Tellus A, 48 (5), 608-621. doi:10.1034/j.1600-0870.1996.t01-4-00002.x
  • 17.MacKenzie B.R., Gislason H., Möllmann C., Köster F.W., 2007, Impact of 21st century climate change on the Baltic Sea fish community and fisheries, Glob. Change Biol., 13 (7), 1348-1367. doi:10.1111/j.1365-2486.2007.01369.x
  • 18.Meier H.E.M., 2006, Baltic Sea climate in the late twenty-first century: a dynamical downscaling approach using two global models and two emission scenarios, Clim. Dynam., 27 (1), 39-68.doi:10.1007/s00382-006-0124-x
  • 19.Meier H.E.M., Andréasson J., Broman B., Graham L.P., Kjellström E., Persson G., Viehhauser M., 2006, Climate change scenario simulations of wind, sea level, and river discharge in the Baltic Sea and Lake Mälaren region - a dynamical downscaling approach from global to local scales, Rep. Meteorol. Climat. No. 109, SMHI, Norrköping, 52 pp.
  • 20.Meier H.E.M., Döscher R., 2002, Simulated water and heat cycles of the Baltic Sea using a 3D coupled atmosphere-ice-ocean model, Boreal Environ. Res., 7 (4), 327-334.
  • 21.Meier H.E.M., Döscher R., Faxén T., 2003, A multiprocessor coupled ice-ocean model for the Baltic Sea: application to salt inflow, J. Geophys. Res., 108 (C8), 3273, doi: 10.1029/2000JC000521. doi:10.1029/2000JC000521
  • 22.Meier H.E.M., Eilola K., Almroth E., 2011, Climate-related changes in marine ecosystems simulated with a three-dimensional coupled biogeochemical-physical model of the Baltic Sea, Clim. Res., (in press). doi:10.3354/cr00968
  • 23.Nakićenović N., Alcamo J., Davis G., de Vries B., Fenhann J., Gaffin S., Gregory K., Grübler A., Jung T.Y., Kram T., La Rovére E.L., Michaelis L., Mori S., Morita T., Pepper W., Pitcher H., Price L., Keywan R., Roehrl A., Rogner H.-H., Sankovski A., Schlesinger M., Shukla P., Smith S., Swart R., van Rooijen S., Victor N., Dadi Z., 2000, Emission scenarios, A Special Report of Working Group III of the Intergovernmental Panel on Climate Change, Cambridge Univ. Press, New York, N.Y., 599 pp.
  • 24.Nordström M., 2006, Estimation of gusty winds in RCA, Uppsala Univ., M. Sc. thesis No. 101 (ISSN 1650-6553), 42 pp.
  • 25.Omstedt A., Chen Y., Wesslander K., 2005, A comparison between the ERA40 and the SMHI gridded meteorological databases as applied to Baltic Sea modelling, Nord. Hydrol., 36 (4-5), 369-380.
  • 26.Räisänen J., Hansson U., Ullerstig A., Döscher R., Graham L.P., Jones C., Meier H.E.M., Samuelsson P., Willén U., 2004, European climate in the late 21st century: regional simulations with two driving global models and two forcing scenarios, Clim. Dynam., 22 (1), 13-31.doi:10.1007/s00382-003-0365-x
  • 27.Rockel, B. Woth K., 2007, Extremes of near-surface wind speed over Europe and their future changes as estimated from an ensemble of RCM simulations, Climatic Change, 81 (S1), 267-280. doi:10.1007/s10584-006-9227-y
  • 28.Rubel F., Hantel M., 2001, BALTEX 1/6-degree daily precipitation climatology, Meteorol. Atmos. Phys., 77 (1-4), 155-166. doi:10.1007/s007030170024
  • 29.Samuelsson P., Gollvik S., Ullerstig A., 2006, The land-surface scheme of the Rossby Centre Regional Atmospheric Climate Model (RCA3), Rep. Meteorol. No. 122, SMHI, Norrköping, 25 pp.
  • 30.Samuelsson P., Jones C., Willén U., Ullerstig A., Gollvik S., Hansson U., Jansson C., Kjellström E., Nikulin G., Wyser K., 2011, The Rossby Centre Regional Climate Model RCA3: model description and performance, Tellus A, 63 (1), 4-23. doi:10.1111/j.1600-0870.2010.00478.x
  • 31.Savchuk O.P., Wulff F., 2007, Modeling the Baltic Sea eutrophication in a decision support system, AMBIO, 36 (2-3), 141-148. doi:10.1579/0044-7447(2007)36[141:MTBSEI]2.0.CO;2
  • 32.Savchuk O.P., Wulff F., 2009, Long-term modeling of large-scale nutrient cycles in the entire Baltic Sea, Hydrobiologia, 629 (1), 209-224.,doi:10.1007/s10750-009-9775-z
  • 33.Solomon S., Qin D., Manning M., Chen Z., Marquis M., Averyt K.B., Tignor M., Miller H. L. (eds.), 2007, Climate change 2007: the physical science basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge Univ. Press, Cambridge, New York, N.Y., 847-940.
  • 34.Udin I., Sahlberg J., Lundqvist J.-E., Uusitalo S., Seinä A., Leppäranta M., 1981, BASIS: a data bank for Baltic sea ice and sea surface temperatures, Res. Rep. No. 34, Winter Nav. Res. Board, Swedish Administration of Shipping Navigation and Finnish Board of Navigation, Norrköping, 23 pp.
  • 35.Uppala S.M., Källberg P.W., Simmons A. J., Andrae U., Da Costa Bechtold V., Fiorino M., Gibson J.K., Haseler J., Hernandez A., Kelly G.A., Li X., Onogi K., Saarinen S., Sokka N., Allan R.P., Andersson E., Arpe K., Balmaseda M.A., Beljaars A.C.M., Van De Berg L., Bidlot J., Bormann N., Caires S., Chevallier F., Dethof A., Dragosavac M., Fisher M., Fuentes M., Hagemann S., Hólm E., Hoskins B. J., Isaksen L., Janssen P.A.E.M., Jenne R., Mcnally A.P., Mahfouf J.-F., Morcrette J.-J., Rayner N.A., Saunders R.W., Simon P., Ster A., Trenberth K.E., Untch A., Vasiljevic D., Viterbo P., Woollen J., 2005, The ERA-40 re-analysis, Q. J. Roy. Meteor. Soc., 131 (612), 2961-3012.doi:10.1256/qj.04.176
  • 36.Wulff F., Bonsdorff E., Gren I.-M., Johansson S., Stigebrandt A., 2001, Giving advice on cost effective measures for a cleaner Baltic Sea: a challenge for science, AMBIO, 30 (4-5), 254-259. PMid:11697258
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0009-0017
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.