PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Obserwacje pyłu wulkanicznego nad Polską w kwietniu 2010 roku

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Observation of volcanic ash over Poland in April 2010
Języki publikacji
PL
Abstrakty
PL
Celem pracy jest analiza napływu pyłu wulkanicznego nad obszar Polski w połowie kwietnia 2010 r. Wybuch wulkanu Eyjafjoll na Islandii 14 kwietnia spowodował emisję pyłów i gazów do atmosfery, które przesuwały się w kierunku zachodniej i środkowej części Europy. Analiza trajektorii wstecznych pokazała, że pył wulkaniczny pojawił się nad Polską 16 kwietnia. Potwierdziły to obrazy satelitarne wykonane z kompozycji barwnej kanałów w obszarze widzialnym, środkowej oraz dalekiej podczerwieni. Badania własności optycznych pyłów wulkanicznych przeprowadzono w Laboratorium Transferu Radiacyjnego Instytutu Geofizyki UW w Warszawie oraz na Stacji Transferu Radiacyjnego SolarAOT w Strzyżowie na Podkarpaciu. Pomiary prowadzone przy użyciu ceilometru pokazały występowanie aerozolu wulkanicznego w postaci 2-3 warstw do wysokości ok. 5 km nad powierzchnią ziemi. Wyznaczony na podstawie tych pomiarów współczynnik ekstynkcji aerozolu wynosił maksymalnie 0,02-0,03 km-1 (nad ranem 17 kwietnia) dla długości fali 1064 nm. Na ogół jednak przyjmował on znacznie niższe wartości. Obliczona na podstawie profilu ekstynkcji grubość optyczna pyłu wulkanicznego była również niska. Jedynie nad ranem 17 kwietnia osiągała wartości 0,03 w 1064 nm. Niewielkie zawartości pyłu wulkanicznego w pionowej kolumnie atmosfery potwierdzają również pomiary fotometrami słonecznymi w Warszawie i Strzyżowie. W okresie od 17 do 18 kwietnia notowano małe wartość całkowitej grubość optycznej aerozolu, mieszczące się w przedziale 0,11-0,16 (dla 500 nm), podczas gdy średnia klimatyczna wartość grubość optycznej aerozolu w kwietniu wynosi ok. 0,25.
EN
Optical properties of a volcanic aerosol obtained by direct observations from Radiation Transfer Observatory at the Institute of Geophysics University of Warsaw and Aerosol and Radiation Observatory SolarAOT in Strzyżów (south eastern part of Poland) together with Meteosat Second Generation observations are discussed. Aerosol optical properties measured by the Multi-Filter Rotating Shadowband Radiometer (Model MFR-7), Microtops sun photometer, and CHM-15K ceilometer between 14 and 23 April 2010 are investigated . Back-trajectories calculated for 16 and 17 April show advection of air masses from Iceland in the lower and the middle troposphere. Satellite observations performed by the Spinning Enhanced Visible and Infrared Imager (SEVIRI) instrument onboard of the MSG2 confirmed ash over Poland. Unfortunately, cloudy conditions during this day prevented remote observations of the atmosphere's optical properties from the ground. However, surface observations performed on 17 April by the ceilometer indicate volcanic ash layers. At around midnight first ash layer appeared at 5 km. One hour later the second layer between 3 and 4 km was observed. An aerosol layer between 0.5 and 2 km was also measured, however it is difficult to determine the type of remotely sensed particles. After sunset very weak ash clouds were recorded between top of the boundary layer and 4 km. During the day those ash layers were not measured, probably due to a poor signal to noise ratio of the ceilometer's signal. Extinction coefficient for volcanic ash was estimated as 0.02-0.03 km-1 and aero-sol optical thickness was calculated about 0.03 at 1064 nm. Sun photometers' observations at both stations show small total aerosol optical thickness which varies between 0.11 and 0.16 (at 500 nm) during 17 and 18 April 2010. However, the mean aerosol optical thickness for April is about 0.25.
Rocznik
Tom
Strony
119--143
Opis fizyczny
Bibliogr. 48 poz., wykr.
Twórcy
autor
  • Instytut Geofizyki UW - Warszawa
Bibliografia
  • 1.Alexandrov M.D., Marshak A., Cairns B., Lacis A.A., Carlson B.E., 2004, Automated cloud screening algorithm for MFRSR data. Geophys. Res. Lett., 31, L04118, doi:10.1029/2003GL019105.
  • 2.Ansmann A., Wagner R, Wandinger U., Mattis I., Górsdorf U., Dier H.-D., Reichardt J., 1996, Pinatubo aerosol and stratospheric ozone reduction: Observations over central Europe.}. Geophys. Res., 101(D13), 18,775-18,785, doi:10.1029/96JD01373.
  • 3.Ansmann A., Tesche M., Gross S., Freudenthaler V., Seifert P., Hiebsch A., Schmidt J., Wandinge r U.,Mattis 1., Mu11er D, Wiegner M., The 16 April 2010 major volcanic ash plume over central Europe: EARLINET Udar and AERONET photometer observations at Leipzig and Munich, Germany. Geophys. Res. Lett, 37, L13810, doi:10.1029/2010GL043809.
  • 4.Asano S., Vchiyama A., Shiobara M., 1993, Spectral optical thickness and size distribution of the Pinatubo volcanic aerosols as estimated by ground-based sunphotometry. J. Meteor. Soc. Japan, 71, 165-173.
  • 5.Berkoff T.A., We1ton E.J., Campbell J.R., Scott VS., Spinhirne J.D., 2003, Investigation of overlap correction techniques for the Micro-Pulse Lidar NETwork (MPLNET). Proc. Geo-science and Remote Sensing Symp. 2003, IGARSS, '03, Toulouse, France, IEEE International, 7, 4395-4397.
  • 6.Cad1e R.D., 1980, A comparison of volcanic with other fluxes of atmospheric trace gas constituents. Rev. Geophys. Space Phys., 18, 746-752.
  • 7.Christy J.R., Spencer R.W., Braswe1I W.D., 2000, MSU tropospheric temperatures: Data-set construction and radiosonde comparisons.J. Atmos. Oceanic Tech. 17, 1153-1170, doi: 10.1175/1520-0426.
  • 8.Deshler T, Hofmann D.J., Johnson B.J., Rozier W.R., 1992, Balloonborne measurements of the Pinatubo aerosol size distribution and volatility at Laramie, Wyoming during the summer of 1991. Geophys. Res. Lett., 19, 199-202.
  • 9.Drax1er R.R., Ro1ph G.D., 2010, HYSPL1T (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY Website (http://ready.arl.noaa.gov/HYSPLIT.php). NOAA Air Resources Laboratory, Silver Spring, MD.
  • 10.Durant A.J., Shaw R.A., Rose W.I., M i Y., Ernst G.G.J., 2008, Ice nucleation and overseeding of ice in volcanic clouds. J. Geophys. Res., 113, D09206, doi:10.1029/2007JD009064.
  • 11.Eatough D.J., Caka F.M., Farber R.J., 1994, The Conversion of SO2 to Sulfate in the Atmosphere. Israel Journal of Chemistry, 34, 301-314.
  • 12.EUMETSAT, 2007, Volcanic Ash detection with MSC algorithm Theoretical Basics Documents. EUM/ MET/REP/07/0467.
  • 13.Ferna1 d EG, 1984, Analysis of atmospheric lidar observations: some comments. Appl. Opt. 23, 652-653.
  • 14.Fu Q., Liou K., 1993, Parameterization of the Radiative Properties of Cirrus Clouds.}. Atmos. So'., 50, 2008-2025.
  • 15.Ger1ach T.M., 1991, Present-day CO2 emissions from volcanoes. EOS, 72, 249, 254-255.
  • 16.Graf H.-E, Feichter J., Langmann B., 1997, Volcanic sulfur emissions: Estimates of source strength and its contribution to the global sulfate distribution. J. Geophys. Res., 102, 10727-10738.
  • 17.Hansen J., Lacis A., Ruedy R., Sato M., 1992, Potential climate impact of Mount Pinatubo eruption. Geophys. Res. Lett., 19, 215-218.
  • 18.Ho1ben B.N., Tanre D., Smirnov A., Eck T.F., Slutsker I., Abuhassan N., Newcomb W.W., Schafer J.S., Chatenet B., Lavenu E, Kaufman Y.J., Castle J.V., Setzer A., Markham B., C1ark D., Frouin R" HaIthore R., Karneli A., O' NeI11 N.T., Pietras C, Pinker R.T., Voss K" Zibordi G., 2001, An emerging ground-based aerosol climatology: Aerosol optical depth from AERONET. J. Geophys. Res, 106, 12067-12098, 2001.
  • 19.IPCC (Intergovernmental Panelon Climate Change), 2007, The physical science basis: working group I contribution to the Fourth Assessment Report of the IPCC. Cambridge University Press, London.
  • 20.Joshi M.M., Jones G.S., 2009, The climatic effects of the direct injection of water vapour into the stratosphere by large volcanic eruptions. Atmos. Chem. Phys., 9, 6109-6118.
  • 21.Kardas A.E., Markowicz K.M., Stelmaszczyk K., Karasinski G., Ma1inowski S.P., StacewiczT., Woeste L., Hochhertz C, 2010, Saharan aerosol sensed over Warsaw by backscatter depolarization lidar. Optica Applicata, 40, 219-237.
  • 22.Kaufman Y.J., Tanre D., Remer L.A., Vermote E.F., Chu A., Holben B.N., 1997, Operational remote sensing of tropospheric aerosol over the land from EOS-MODIS. J. Geophys. Res., 102, 17,051-17,061.
  • 23.King M.D., Kaufman Y.J., Tanre D., Nakajima X, 1999, Remote sensing of tropospheric aerosols from space: Past, present and future. Bulletin of the American Meteorological Society, t. 80, s. 2229-2259.
  • 24.K1ett J.D., 1985, Lidar inversions with variable backscatter/extinction values. Appl. Opt., 24, 211-220.
  • 25.Maciszewska A., Markowicz K., Witek M., 2010, Multiyear analysis of the aerosol optical thickness over Europe. Acta Geophysica, 58, 1147-1163.
  • 26.Markowicz K.M., F1atau RJ., Kardaś A.E., Stelmaszczyk K., Woeste L, 2008, Ceilometer retrieval of the boundary layer vertical aerosol extinction structure. J. Atmos. Ocean. Techn., 25, 928-944.
  • 27.Harrison L., Michalsky J., Berndt J., 1994, Automated Multifilter Rotating Shadow-band Radiometer: an Instrument for Optical Depth and Radiation Measurements. Appl. Opt., 33, 5118-5125.
  • 28.McCormick M.P., Thomason L.W., Trepte C.R., 1995, Atmospheric effects of the Mt Pinatubo eruption. Nature 373: 399-404. doi;10.1038/373399a0.
  • 29.Morys M., Mims III F.M., Hagerup S., Anderson S., Baker A., Kia J., Wa1kup T., 2001, Design, calibration, and performance of MICROTOPS II handheld ozone monitor and Sun photometer. J. Geophys. Res., 106, 14,573-14,582.
  • 30.Myhre G., Myhre A., Storda1 F., 2001, Historical evolution of radiative forcing of climate. Atmos. Environ., 35, 2361-2373.
  • 31.O'Connor E. J., Illingworth A.J., Hogan R. J., 2004, A technique for auto-calibration of cloud lidar. J. Atmos. Oceanic Technol., 21, 777-786.
  • 32.Parker D.E., Wilson H., Jones P.D., Christy J.R., Fo11and C.K., 1996, The impact of Mount Pinatubo on worldwide temperatures. Int. J. Climatol. 16, 487-497.
  • 33.Papparlardo G., Mattis I., EARLINET Team, 2010, Dispersion and evolution of the Eyjafjallajokull ash plume over Europe: vertically resolved measurements with the European LIDAR network EARLINET. EGU General Assembly, Vienna, t. 12, EGU2010-15731.
  • 34.Pittock A.B., 1965, Possible destruction of ozone by volcanic material at 50 mbar. Nature 207, 182.
  • 35.Porter J.N., Lienert B., Sharma S.K., 2000, Using the Horizontal and Slant Lidar Calibration Methods To Obtain Aerosol Scattering Coefficients From A Coastal Lidar In Hawaii. J. Atmos. Ocean. Techn., 17, 1445-1454.
  • 36.Sasano Y., Browell E.V., Ismail S., 1985, Error caused by using a constant extinction/back-scattering ratio in the lidar solution. Appl. Optics, 24, 3929-3932.
  • 37.Sassen K., De Mott RJ., Prospero J.M., Poe11ot M.R., 2003, Saharan dust storms and indirect aerosol effects on clouds: CRYSTAL-FACE results. Geophys. Res. Lett., 30, doi:10.1029/2003GL017371.
  • 38.Seinfeld J.H., Pandis S.N., 1998, Atmospheric Chemistry and Physics: From Air Pollution to Climate Chang. John Wiley & Sons, Inc., New York.
  • 39.S1inn W.G.N., 1977, Some approximations for the wet and dry removal of particles and gases from the atmosphere. Water Air Soil Poll. 7 , 513-543.
  • 40.Stachlewska I.S., Neuber R., Lamper, A., Ritter C, Wehr1e G., 2010, AMALi - the Airborne Mobile Aerosol Lidar for Arctic research. Atmos. Chem. Phys., 10, 2947-2963, doi:10.5194/acp-10-2947-2010.
  • 41.Stachlewska I. S., Ritter C, 2010, On retrieval of lidar extinction profiles using Two-Stream and Raman techniques. Atmos. Chem. Phys., 10, 2813-2824, doi:10.5194/acp-10-2813-2010.
  • 42.Stowe L.L., Ignatov A.M., Singh R.R., 1997, Development, validation, and potential enhancements to the second generation operational aerosol product at the National Environmental Satellite, Data, and Information Service of the National Oceanic and Atmospheric Administration. J. Geophys. Res., 102, D14, 16,923-16,934.
  • 43.Symonds R.B., Rose W.I., Reed M.H., 1988, Contribution of Cl- and F-bearing gases to the atmosphere by volcanoes. Nature, 334, 415-418.
  • 44.Textor C, Graf H.-E, Timmreck C, Robock A., 2004, Emissions from volcanoes, Chapter 11 of Emissions of Chemical Compounds and Aerosols in the Atmosphere. Red. C. Granier, C. Reeves, and P. Artaxo, Kluwer, Dordrecht.
  • 45.Trigo R.M, Vaquero J.M., Alcoforado M.J., Barriendos M., Taborada J., Carcia-Herrera R., LuterbacherJ., 2009, Iberia in 1816, the year without a summer. Int. J. Clim., 29, 99-115, doi.-10.1002/joc.1693.
  • 46.Twome S.A., 1977, The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci., 34, 1149-1152.
  • 47.Wang X., Boselli A., D'Avino L., Pisani G., Spine11i N., Amodeo A., Chaikovsky A., Wiegner M., Nickovic S., Papayannis A., Perrone M.R., Rizi V, Sauvage L, Stoh1 A., 2008, Volcanic dust characterization by EARLI-NET during Etna's eruptions in 2001-2002. Atmospheric Environment, 42, 893-905.
  • 48.We1ton E.J., Campbell J.R., 2002, Micropulse Udar signals: Uncertainty analysis. J. Atmos. Oceanic Technol., 19, 2089-2094.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0009-0001
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.