Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Suppose a set W of strings contains exactly one rotation (cyclic shift) of every primitive string on some alphabet Σ. Then W is a circ-UMFF if and only if every word in Σ+ has a unique maximal factorization over W. The classic circ-UMFF is the set of Lyndon words based on lexicographic ordering (1958). Duval (1983) designed a linear sequential Lyndon factorization algorithm; a corresponding PRAMparallel algorithmwas described by J. Daykin, Iliopoulos and Smyth (1994). Daykin and Daykin defined new circ-UMFFs based on various methods for totally ordering sets of strings (2003), and further described the structure of all circ-UMFFs (2008). Here we prove new combinatorial results for circ-UMFFs, and in particular for the case of Lyndon words. We introduce Acrobat and Flight Deck circ-UMFFs, and describe some of our results in terms of dictionaries. Applications of circ-UMFFs pertain to structured methods for concatenating and factoring strings over ordered alphabets, and those of Lyndon words are wide ranging and multidisciplinary.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
295--309
Opis fizyczny
. Bibliogr. 16 poz.
Twórcy
autor
autor
autor
- Department of Computer Science, Royal Holloway College, University of London, Egham, TW20 0EX, UK, jackie.daykin@kcl.ac.uk
Bibliografia
- [1] S. Brlek and G. Melanc¸on and G. Paquin, Properties of the extremal infinite smooth words, Discrete Math. Theor. Comput. Sci. 9 : 2 (2007) 33-50.
- [2] M. Chemillier, Periodic musical sequences and Lyndon words, Soft Computing - A Fusion of Foundations, Methodologies and Applications, Springer-Verlag, ISSN 1432-7643 (Print) 1433-7479 (Online), Vol. 8, Issue 9 (September 2004) 611-616.
- [3] M. Crochemore, J. D´esarm´enien and D. Perrin, A note on the Burrows-Wheeler transformation, Theoret. Comput. Sci. 332 (1-3) (2005) 567-572.
- [4] K.T. Chen, R.H. Fox and R.C. Lyndon, Free differential calculus, IV - The quotient groups of the lower central series, Ann. Math. 68 (1958) 81-95.
- [5] D.E. Daykin, A 2n algorithm factors an n-string into Lyndon words, to appear in J. Discrete Algorithms. D.E. Daykin et al. /Combinatorics of Unique Maximal Factorization Families (UMFFs) 309
- [6] D.E. Daykin and J.W. Daykin, Lyndon-like and V-order factorizations of strings, J. Discrete Algorithms 1 (2003) 357-365.
- [7] D.E. Daykin and J.W. Daykin, Properties and construction of unique maximal factorization families for strings, Internat. J. Found. Comput. Sci. Vol. 19, No. 4 (2008) 1073-1084.
- [8] J.W. Daykin, C.S. Iliopoulos and W.F. Smyth, Parallel RAM algorithms for factorizing words, Theoret. Comput. Sci. 127 (1) (1994) 53-67.
- [9] J.P. Duval, Factorizing words over an ordered alphabet, J. Algorithms 4 (1983) 363-381.
- [10] C.S. Iliopoulos, D. Moore and W.F. Smyth, The covers of a circular Fibonacci string, J. Combin. Math. Combin. Comput. 26 (1998) 227-236.
- [11] C.S. Iliopoulos and W.F. Smyth, Optimal algorithms for computing the canonical form of a circular string, Theoret. Comput. Sci. 92 (1) (1992) 87-105.
- [12] D.L. Kreher and D.R. Stinson, Combinatorial Algorithms: Generation, Enumeration, and Search, CRC Press (1998).
- [13] M. Lothaire, Combinatorics on Words, Addison-Wesley, Reading, MA, 1983; 2nd Edition, Cambridge University Press, Cambridge, 1997.
- [14] A. de Luca, A division property of the FibonacciWord, Information Processing Letters 54 (6) (1995) 307-312.
- [15] L. Perret, A chosen ciphertext attack on a public key cryptosystem based on Lyndon words, Proceedings of International Workshop on Coding and Cryptography (WCC 2005), (January 2005) 235-244.
- [16] Bill Smyth, Computing patterns in strings, Pearson (2003).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0008-0073