PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

MR Brain Image Segmentation Using A Multi-seed Based Automatic Clustering Technique

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, the automatic segmentation of multispectral magnetic resonance image of the brain is posed as a clustering problem in the intensity space. Thereafter an automatic clustering technique is proposed to solve this problem. The proposed real-coded variable string length genetic clustering technique (MCVGAPS clustering) is able to evolve the number of clusters present in the data set automatically. Each cluster is divided into several small hyperspherical subclusters and the centers of all these small sub-clusters are encoded in a string to represent the whole clustering. For assigning points to different clusters, these local sub-clusters are considered individually. For the purpose of objective function evaluation, these sub-clusters are merged appropriately to form a variable number of global clusters. A recently developed point symmetry distance based cluster validity index, Sym-index, is optimized to automatically evolve the appropriate number of clusters present in an MR brain image. The proposed method is applied on several simulated T1-weighted, T2- weighted and proton density normal and MS lesion magnetic resonance brain images. Superiority of the proposed method over Fuzzy C-means, Expectation Maximization clustering algorithms are demonstrated quantitatively. The automatic segmentation obtained by multiseed based multiobjective clustering technique (MCVGAPS) is also compared with the available ground truth information.
Wydawca
Rocznik
Strony
199--214
Opis fizyczny
Bibliogr. 14 poz., fot., tab.
Twórcy
autor
Bibliografia
  • [1] BrainWeb: Simulated brain database., Available: http://www.bic.mni.mcgill.ca/brainweb.
  • [2] Bandyopadhyay, S., Saha, S.: GAPS: A Clustering Method Using A New Point Symmetry Based Distance Measure, Pattern Recognition, 40, 2007, 3430-3451.
  • [3] Bandyopadhyay, S., Saha, S.: A Point Symmetry Based Clustering Technique for Automatic Evolution of Clusters, IEEE Transactions on Knowledge and Data Engineering, 20(11), November, 2008, 1-17.
  • [4] Ben-Hur, A., Guyon, I.: Detecting Stable Clusters using Principal Component Analysis in Methods in Molecular Biology, Humana press, 2003.
  • [5] Bezdek, J. C.: Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum, New York, 1981.
  • [6] Bhandarkar, S. M., Zhang, H.: Image segmentation using evolutionary computation, IEEE Transactions on Evol. Comp., 3(1), 1999, 1-21.
  • [7] Everitt, B. S.: Cluster Analysis, Halsted Press, third edition, 1993.
  • [8] Gonzalez, R. C., Woods, R. E.: Digital Image Processing, Addison-Wesley,Massachusetts, 1992.
  • [9] Jain, A. K., Murthy,M., Flynn, P.: Data Clustering: A Review, ACM Computing Reviews, Nov,1999.
  • [10] Maulik, U., Bandyopadhyay, S.: Fuzzy partitioning using a real-coded variable-length genetic algorithm for pixel classification, IEEE Transactions on Geoscience and Remote Sensing, 41(5), 2003, 1075- 1081.
  • [11] Saha, S., Bandyopadhyay, S.: MRI brain image segmentation by fuzzy symmetry based genetic clustering technique, in: Proceedings of the 2007 IEEE Congress on Evolutionary Computation (CEC'07), 2007, 4417-4424.
  • [12] Saha, S., Bandyopadhyay, S.: Application of a New Symmetry Based Cluster Validity Index for Satellite Image Segmentation, IEEE Geoscience and Remote Sensing Letters, 5(2), APRIL 2008, 166-170.
  • [13] Suckling, J., Sigmundsson, T., Greenwood, K., Bullmore, E.: A modified fuzzy clustering algorithm for operator independent brain tissue classification of dual echo MR images, Magnetic Resonance Imaging, 17, 1999, 1065-1076.
  • [14] Xie, X. L., Beni, G.: A Validity Measure for Fuzzy Clustering, IEEE Transactions on Pattern Analysis and Machine Intelligence, 13, 1991, 841-847.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0008-0069
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.