PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Improved Resulted Word Counts Optimizer for Automatic Image Annotation Problem

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Automatic Image Annotation is an important research topic in pattern recognition area. There are many different approaches to Automatic Image Annotation. In many of these approaches a key problem is determining correct word distributions in the generated annotations. Incorrect word distributions (word frequencies) results in large reduction of annotation quality. The paper presents a generic approach to find correct word frequencies. The approach may be used with many automatic image annotators, based on various machine learning paradigms. Proposed method is an improved version of our already presented method, called Greedy Resulted Word Counts Optimization. The key differences and novelties in the paper are: the concept of border support values and a method of optimal step selection in the optimization routine. Optimal step selection allows to reduce the number of computations during the optimization procedure, comparing to old Greedy Resulted Word Counts Optimization method.
Wydawca
Rocznik
Strony
435--463
Opis fizyczny
Bibliogr. 34 poz., tab., wykr.
Twórcy
autor
Bibliografia
  • [1] Barnard, K., Duygulu, P., Forsyth, D., de Freitas, N., Blei, D.M., Jordan,M. I.: MatchingWords and Pictures, Journal of Machine Learning Research, 3, 2003, 1107-1135.
  • [2] Barnard, K., Duygulu, P., de Freitas, N., Forsyth, D.: Object Recognition as Machine Translation - Part 2: Exploiting Image Database Clustering Models, 2002.
  • [3] Bashir, A., Khan, L.: A Framework for Image Annotation Using Semantic Web, Proceedings of ACM SIGKDD First International Workshop on Mining for and from the Semantic Web (MSW 2004), 2004.
  • [4] Carneiro, G., Chan, A. B., Moreno, P. J., Vasconcelos, N.: Supervised Learning of Semantic Classes for Image Annotation and Retrieval, IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(3), 2007, 394-410.
  • [5] Carneiro, G., Vasconcelos, N.: Formulating Semantic Image Annotation as a Supervised Learning Problem, Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), 2, 2005.
  • [6] Chang, E., Goh, K., Sychay, G.,Wu, G.: CBSA: content-based soft annotation for multimodal image retrieval using Bayes point machines, IEEE Transactions on Circuits and Systems for Video Technology, 13(1), 2003, 26-38.
  • [7] Cusano, C., Ciocca, G., Schettini, R.: Image annotation using SVM, Proceedings of SPIE, Internet Imaging V, 5304, 2003.
  • [8] Duygulu, P., Barnard, K., de Freitas, N., Forsyth, D.: Object Recognition as Machine Translation: Learning a Lexicon for a Fixed Image Vocabulary, Proceedings of Seventh European Conference on Computer Vision (ECCV'02), 4, 2002.
  • [9] Duygulu, P., Hauptmann, A.: What's News,What's Not? Associating News Videos withWords, Proceedings of the 3rd International Conference on Image and Video Retrieval (CIVR'04), 2004.
  • [10] Feng, S. L., Manmatha, R., Lavrenko, V.: Multiple Bernoulli Relevance Models for Image and Video Annotation, Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'04), 2, 2004.
  • [11] Glotin, H., Tollari, S.: Fast Image Auto-Annotation with Visual Vector Approximation Clusters, Proceedings of Fourth International Workshop on Content-Based Multimedia Indexing (CBMI2005), 2005.
  • [12] Goh, K.-S., Chang, E. Y., Li, B.: Transactions on Knowledge and Data Engineering, 17(10), 2005, 1333-1346.
  • [13] Goldberg, D. E.: Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley Longman Publishing Co., Inc., 1989.
  • [14] Jeon, J., Lavrenko, V., Manmatha, R.: Automatic Image Annotation and Retrieval using Cross-Media Relevance Models, Proceedings of the ACM SIGIR Conference on Research and Development in Information Retrieval, 2003.
  • [15] Jeon, J., Manmatha, R.: Automatic Image Annotation of News Images with Large Vocabularies and Low Quality Training Data, MM 368, University of Massachusetts, 2004.
  • [16] Kang, F., Jin, R., Chai, J. Y.: Regularizing Translation Models for Better Automatic Image Annotation, Proceedings of the 2004 ACM CIKM International Conference on Information and Knowledge Management, 2004.
  • [17] Kirkpatrick, S., Gelatt, C. D., Vecchi, M. P.: Optimization by Simulated Annealing, Science, 220(4598), 1983, 671 - 680.
  • [18] Kwasnicka, H., Paradowski, M.: A Discussion on Evaluation of Image Auto-AnnotationMethods, Proceedings of The Sixth International Conference on Intelligent Systems Design and Applications (ISDA2006), 2, 2006.
  • [19] Kwasnicka, H., Paradowski, M.: Fast Image Auto-Annotation with Discretized Feature Distance Measures, Machine Graphics and Vision, 15(2), 2006, 123-140.
  • [20] Kwasnicka, H., Paradowski, M.: Multiple Class Machine Learning Approach for Image Auto-Annotation Problem, Proceedings of The Sixth International Conference on Intelligent Systems Design and Applications (ISDA2006), 2, 2006.
  • [21] Kwasnicka, H., Paradowski, M.: Resulted word counts optimization A new approach for better automatic image annotation, Pattern Recognition, 41, 2008, 3562 - 3571.
  • [22] Laaksonen, J., Koskela, M., Oja, E.: PicSOM-self-organizing image retrieval with MPEG-7 content descriptors, IEEE Transactions on Neural Networks, 13(4), 2002, 841-853.
  • [23] Lavrenko, V., Feng, S., Manmatha, R.: Statistical models for automatic video annotation and retrieval, Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '04), 3, 2004.
  • [24] Lavrenko, V.,Manmatha, R., Jeon, J.: AModel for Learning the Semantics of Pictures, Proceedings of NIPS, MIT Press, 2003.
  • [25] Monay, F., Gatica-Perez, D.: On Image Auto-Annotation with Latent Space Models, Proceedings of the eleventh ACM international conference on Multimedia, 2003.
  • [26] Pan, J.-Y., Yang, H.-J., Duygulu, P., Faloutsos, C.: Automatic Image Captioning, Proceedings of the 2004 IEEE International Conference on Multimedia and Expo (ICME 2004), 3, 2004.
  • [27] Pan, J.-Y., Yang, H.-J., Faloutsos, C., Duygulu, P.: GCap: Graph-based Automatic Image Captioning, Proceedings of the 4th International Workshop on Multimedia Data and Document Engineering (MDDE 04), in conjunction with Computer Vision Pattern Recognition Conference (CVPR 04), 2004.
  • [28] Smeulders, A. W., Gupta, A.: Content-Based Image Retrieval at the End of the Early Years, Transactions on Pattern Analysis and Machine Intelligence, 22(12), 2000, 13491380.
  • [29] Stachurski, A., Wierzbicki, A. P.: Foundation of Optimization (in Polish), Warsaw University of Technology Publishers, 2001.
  • [30] Tang, J., Lewis, P. H.: A Study of Quality Issues for Image Auto-Annotation with the Corel Data-Set, IEEE Transactions on Circuits and Systems for Video Technology, 17(3), 2007, 384-389.
  • [31] Viitaniemi, V., Laaksonen, J.: Keyword-Detection Approach To Automatic Image Annotation, Proceedings of 2nd European Workshop on the Integration of Knowledge, Semantic and Digital Media Technologies (EWIMT 2005), 2005.
  • [32] Wang, L., Khan, L.: Automatic Image Annotation and Retrieval Using Weighted Feature Selection, Multimedia Tools and Applications, 29(1), 2006, 55-71.
  • [33] Yasuhide, M., Hironobu, T., Ryuichi, O.: Image-to-word transformation based on dividing and vector quantizing images with words, Proceedings of the International Workshop on Multimedia Intelligent Storage and Retrieval Management, 1999.
  • [34] Yavlinsky, A., Schoeld, E., Ruger, S.: Automated Image Annotation Using Global Features and Robust Nonparametric Density Estimation, Proceedings of the International Conference on Image and Video Retrieval, 2005.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0008-0059
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.