PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Boosting Classifiers Built from Different Subsets of Features

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We focus on the adaptation of boosting to representation spaces composed of different subsets of features. Rather than imposing a single weak learner to handle data that could come from different sources (e.g., images and texts and sounds), we suggest the decomposition of the learning task into several dependent sub-problems of boosting, treated by different weak learners, that will optimally collaborate during the weight update stage. To achieve this task, we introduce a new weighting scheme for which we provide theoretical results. Experiments are carried out and show that ourmethod works significantly better than any combination of independent boosting procedures.
Rocznik
Strony
89--109
Opis fizyczny
Bibliogr. 23 poz., tab., wykr.
Twórcy
autor
autor
autor
  • Université de Saint-Etienne, F-42000, St-Etienne, France, UMR-CNRS 5516, Laboratoire Hubert Curien, 18 rue du Professeur Benoit Lauras, F-42000, St-Etienne, France, janodet@univ-st-etienne.fr
Bibliografia
  • [1] Breiman, L.: Bagging Predictors, Machine Learning, 24(2), 1996, 123-140.
  • [2] Breiman, L.: Random Forests, Machine Learning, 45(1), 2001, 5-32.
  • [3] Burges, C. J. C.: A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery, 2, 1998, 121-167.
  • [4] Callut, J., Dupont, P.: Inducing Hidden Markov Models to Model Long-Term Dependencies, Proc. of the 16th European Conference on Machine Learning (ECML'05), LNAI 3720, 2005.
  • [5] Cherkauer, K. J.: Human Expert-Level Performance on a Scientific Image Analysis Task by a System Using Combined Artificial Neural Networks, Working Notes, Integrating Multiple Learned Models for Improving and Scaling Machine Learning Algorithms Workshop, 13th National Conference on Artificial Intelligence, 1996.
  • [6] Cristianini, N., Shawe-Taylor, J.: An Introduction to Support VectorMachines and other Kernel-based Learning Methods, Cambridge University Press, 2000.
  • [7] Denis, F., Esposito, Y., Habrard, H.: Learning Rational Stochastic Languages, Proc. of the 19th Conference on Computational Learning Theory (COLT'06), LNAI 4005, 2006.
  • [8] Dietterich, T. G.: Ensemble Methods in Machine Learning, Proc. of the 1st International Workshop on Multiple Classifier Systems, LNCS 1857, 2000.
  • [9] Durbin, R., Eddy, S. R., Krogh, A., Mitchison, G.: Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids, Cambridge University Press, 1999.
  • [10] Freund, Y., Schapire, R. E.: Experiments with a New Boosting Algorithms, Proc. of the 13th International Conference on Machine Learning (ICML'96), 1996.
  • [11] Freund, Y., Schapire, R. E.: A Decision-Theoretic Generalization of Online Learning and an Application to Boosting, Journal of Computer and System Sciences, 55(1), 1997, 119-139.
  • [12] Gama, J., Brazdil, P.: Cascade Generalization, Machine Learning, 41(3), 2000, 315-343.
  • [13] Garcia-Salicetti, S., Beumier, C., Chollet, G., Dorizzi, B., Leroux-Les-Jardins, J., Lunter, J., Ni, Y., Petrovska-Delacretaz, D.: BIOMET: A Multimodal Person Authentication Database Including Face, Voice, Fingerprint, Hand and Signature Modalities, Proc. of the 4th International Conference on Audio and Video-Based Biometric Person Authentication (AVBPA'03), LNCS 2688, 2003.
  • [14] Goodman, J.: A Bit of Progress in Language Modeling, Technical Report MSR-TR-2001-72, Microsoft Research, 2001. J.-C. Janodet et al. / 2-BOOST 109
  • [15] de la Higuera, C.: A Bibliographic Survey on Grammatical Inference, Pattern Recognition, 38(9), 2005, 1332-1348.
  • [16] Kearns, M. J., Vazirani, U. V.: An Introduction to Computational Learning Theory, M.I.T. Press, 1994.
  • [17] Kohavi, R.: A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection, Proc. of the 15th International Joint Conference on Artificial Intelligence (IJCAI'95), 1995.
  • [18] Koltchinskii, V., Panchenko, D.: Empirical Margin Distributions and Bounding the Generalization Error of Combined Classifiers, Annals of Statistics, 30(1), 2002, 1-50.
  • [19] Meir, R., Raetsch, G.: An Introduction to Boosting and Leveraging, Advanced Lectures on Machine Learning, LNAI 2600, 2003.
  • [20] Schapire, R. E., Freund, Y., Bartlett, P., Lee, W. S.: Boosting the Margin: A New Explanation for the Effectiveness of Voting Methods, Annals of Statistics, 26, 1998, 1651-1686.
  • [21] Schapire, R. E., Singer, Y.: Improved Boosting Algorithms using Confidence-rated Predictions, Proc. of the 11th International Conference on Computational Learning Theory (COLT'98), 1998.
  • [22] Vapnik, V.: Statistical Learning Theory, JohnWiley, 1998.
  • [23] Wolpert, D. H.: Stacked Generalization, Neural Networks, 5(2), 1992, 241-259.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0008-0043
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.