PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Flow, waves and water exchange in the Suur Strait, Gulf of Riga, in 2008

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Wind, flow and wave measurements were performed in November-December in 2008 in the relatively narrow and shallow Suur Strait connecting the waters of the Väinameri and the Gulf of Riga. During the measurement period wind conditions were extremely variable, including a severe storm on 23 November. The flow speed along the strait varied between ±0.2 m s-1, except for the 0.4 m s-1 that occurred after the storm as a result of the sea level gradient. The mean and maximum significant wave heights were 0.53 m and 1.6 m respectively. Because of their longer fetch, southerly winds generated higher waves in the strait than winds from the north. All wave events caused by the stronger southerly winds induced sediment resuspension, whereas the current-induced shear velocity slightly exceeded the critical value for resuspension only when the current speed was 0.4 m s-1. A triple-nested two-dimensional high resolution (100 m in the Suur Strait) circulation model and the SWAN wave model were used to simulate water exchange in 2008 and the wave-induced shear velocity field in the Suur Strait respectively. Circulation model simulations demonstrated that water exchange was highly variable, that cumulative transport followed an evident seasonal cycle, and that there was an gross annual outflow of 23 km3 from the Gulf of Riga. The horizontal distribution of wave-induced shear velocity during the strong southerly wind event indicated large shear velocities and substantial horizontal variability. The shear velocities were less than the critical value for resuspension in the deep area of the Suur Strait.
Słowa kluczowe
Czasopismo
Rocznik
Strony
35--56
Opis fizyczny
Bibliogr. 21 poz., tab., wykr.
Twórcy
autor
autor
autor
autor
autor
autor
  • Marine Systems Institute, Tallinn University of Technology, 12618 Akadeemia 15a, Tallinn, Estonia, raudsepp@phys.sea.ee
Bibliografia
  • 1.Alari V., Raudsepp U., Köuts T., 2008, Wind wave measurements and modeling in Küdema Bay, Estonian Archipelago Sea, J. Marine Syst., 74 (Suppl. 1), S30-S40.
  • 2.Booij N., Ris R.C., Holthuijsen L.H., 1999, A third-generation wave model for coastal regions. 1. Model description and validation, J. Geophys. Res., 104 (C4), 7649-7666.
  • 3.Holthuijsen L.H., 2007, Waves in oceanic and coastal waters, Cambridge Univ. Press, New York, 404 pp.
  • 4.Komen G. J., Cavaleri L., Donelan M., Hasselmann S., Janssen P.A.E.M., 1994, Dynamics and modelling of ocean waves, Cambridge Univ. Press, Cambridge, 532 pp.
  • 5.Kuhrts C., Fennel W., Seifert T., 2004, Model studies of transport of sedimentary material in the western Baltic, J. Marine Syst., 52 (1-4), 167-190.
  • 6.Launiainen J., Laurila T., 1984, Marine wind characteristics in the northern Baltic Sea, Finnish Mar. Res., 250, 52-86.
  • 7.Mardiste H., 1995, Eestit piirava mere hüdroloogilise uurimise ajalugu (kuni 1917 aastani), Teaduse ajaloo lehekülgi Eestist, XI, TA Kirjastus, Tallinn, 58-78.
  • 8.Mulligan R.P., Hay A.E., Bowen A. J., 2008, Wave-driven circulation in a coastal bay during the landfall of a hurricane, J. Geophys. Res., 113, C05026, 1-10.
  • 9.Otsmann M., Astok V., Suursaar Ű., 1997, A model for water exchange between the Baltic Sea and the Gulf of Riga, Nordic Hydrol., 28 (4-5), 351-364.
  • 10.Otsmann M., Suursaar Ű., Kullas T., 2001, The oscillatory nature of the flows in the system of straits and small semienclosed basins of the Baltic Sea, Cont. Shelf Res., 21 (15), 1577-1603.
  • 11.Seifert T., Fennel W., Kuhrts C., 2009, High resolution model studies of transport of sedimentary material in the south-western Baltic, J. Marine Syst., 75 (3-4), 382-396.
  • 12.Seifert T., Kayser B., Tauber F., 2001, Bathymetry data of the Baltic Sea, Baltic Sea Res. Inst., Warnemünde.
  • 13.Sipelgas L., Raudsepp U., Köuts T., 2006, Operational monitoring of suspended matter distribution using MODIS images and numerical modelling, Adv. Space Res., 38 (10), 2182-2188.
  • 14.Soomere T., Keevallik S., 2003, Directional and extreme wind properties in the Gulf of Finland, Proc. Estonian Acad. Sci. Eng., 9, 73-90.
  • 15.SWAN team, 2008, SWAN Cycle III version 40.72.
  • 16.Suursaar Ű., Astok V., Alenius P., Kullas T., Otsmann M., 1998, Thermohaline regime and currents in the Suur Strait and Hari Strait in 1996-1997, EMI Rep. Ser., 9, 6-22.
  • 17.Suursaar Ű., Astok V., Kullas T., Nömm A., Otsmann M., 1995, Currents in the Suur Strait and their role in the nutrient exchange between the Gulf of Riga and the Baltic Proper, Proc. Estonian Acad. Sci. Ecol., 5, 103-123.
  • 18.Suursaar Ű., Astok V., Kullas T., Otsmann M., Alenius P., 1996, Thermohaline regime and currents in the Suur Strait in 1993-1995, EMI Rep. Ser., 3, 7-58.
  • 19.Suursaar Ű., Kullas T., Otsmann M., 2002, A model study of sea level variations in the Gulf of Riga and the Väinameri Sea, Cont. Shelf Res., 22 (14), 2001-2019.
  • 20.Van Rijn L.C., 2007, Unified view of sediment transport by currents and waves 1: initiation of motion, bed roughness and bed-load transport, J. Hydraul. Eng.- ASCE, 133 (6), 649-667.
  • 21.Van der Westhuysen A. J., Zijlema M., Battjes J.A., 2007, Nonlinear saturationbased whitecapping dissipation in SWAN for deep and shallow water, Coast. Eng., 54 (2), 151-170.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0008-0015
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.