PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Seasonal variability in the optical properties of Baltic aerosols

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A five-year dataset of spectral aerosol optical thickness was used to analyse the seasonal variability of aerosol optical properties (the aerosol optical thickness (AOT) at wavelength λ=500 nm, AOT(500) and the Angström exponent for the 440-870 nm spectral range, α(440, 870)) over the Baltic Sea and dependence of these optical properties on meteorological factors (wind direction, wind speed and relative humidity). The data from the Gotland station of the global radiometric network AERONET (Aerosol Robotic Network, http://aeronet.gsfc.nasa.gov) were taken to be representative of the Baltic Sea conditions. Meteorological observations from Farosund were also analysed. Analysis of the data from 1999 to 2003 revealed a strong seasonal cycle in AOT(500) and α(440, 870). Two maxima of monthly mean values of AOT(500) over the Baltic were observed. In April, an increase in the monthly mean aerosol optical thickness over Gotland most probably resulted from agricultural waste straw burning, mainly in northern Europe and Russia as well as in the Baltic states, Ukraine and Belarus. During July and August, the aerosol optical thickness was affected by uncontrolled fires (biomass burning). There was a local minimum of AOT(500) in June. Wind direction, a local meteorological parameter strongly related to air mass advection, is the main meteorological factor influencing the variability of aerosol optical properties in each season. The highest mean values of AOT(500) and α(440, 870) occurred with easterly winds in both spring and summer, but with southerly winds in autumn
Czasopismo
Rocznik
Strony
7--34
Opis fizyczny
Bibliogr. 47 poz. tab., wykr.
Twórcy
autor
autor
  • Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, PL-81-712 Sopot, Poland, zdun@iopan.gda.pl
Bibliografia
  • 1.Birmilli W., Wiedensohler A., Heintzenberg J., Lehmann K., 2001, Atmospheric particle number size distribution in central Europe: statistical relations to air masses and meteorology, J. Geophys. Res., 106 (D23), 32 005-32 018.
  • 2.Carlund T., Hakånsson B., Land P., 2005, Aerosol optical depth over the Baltic Sea derived from AERONET and SeaWiFS measurement, Int. J. Remote Sens., 26 (2), 233-245.
  • 3.Chylek P., Henderson B., Mishchenko M., 2003, Aerosol radiative forcing and the accuracy of satellite aerosol optical depth retrieval, J. Geophys. Res., 108 (D24), 4764 pp.
  • 4.d'Almeida G., Koepke P., Shettle E.P., 1991, Atmospheric aerosols: global climatology and radiative characteristics, A. Deepak Publ., Hampton, Va., 561 pp.
  • 5.Draxler R.R., Rolph G.D., 2003, HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY Website, http: //www.arl.noaa.gov/ready/hysplit4.html, NOAA Air Resour. Lab., Silver Spring, MD.
  • 6.Dubovik O., Holben B., Eck T. F., Smirnov A., Kaufman Y. J., King M.D., Tanré D., Slutsker I., 2002, Variability of absorption and optical properties of key aerosol types observed in worldwide locations, J. Atmos. Sci., 59 (3), 590-608.
  • 7.Dubovik O., King M.D., 2000, A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements, J. Geophys. Res., 105 (D16), 20673-20696.
  • 8.Eck T. F., Holben B.N., Reid J. S., Dubovik O., Smirnov A., O'Neill N.T., Slutsker I., Kinne S., 1999, Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols, J. Geophys. Res., 104 (D24), 31 333 -31 350.
  • 9.El-Metwally M., Alfaro S.C., Abdel Wahab M., Chatenet B., 2008, Aerosol characteristics over urban Cairo: seasonal variations as retrieved from Sun photometer measurements, J. Geophys. Res., 113, D14219, doi:10.1029/2008JD009834.
  • 10.Formenti P., Andreae M.O., Andreae T.W., Galani E., Vasaras A., Zerofos C., Amiridis V., Orlovsky L., Karnieli A., Wendisch M., Wex H., Holben B.N., Maenhaut W., Lelieveld J., 2001, Aerosol optical properties and large-scale transport of air masses: observation at a coastal and a semiarid site in the eastern Mediterranean during summer 1998, J. Geophys. Res., 106 (D9), 9807-9826.
  • 11.Gao B. -C., Montes M. J., Ahmad Z., Davis C.O., 2000, Atmospheric correction algorithm for hyperspectral remote sensing of ocean color from space, Appl.Optics, 39 (6), 887-896.
  • 12.Glantz P., Nilsson D.E., von Hoyningen-HueneW., 2006, Estimating a relationship between aerosol optical thickness and surface wind speed over the ocean, Atmos. Chem. Phys. Discuss., 6, 11 621-11 651.
  • 13.Holben B.N., Eck T. F., Slutsker I., Tanre D., Buis J.P., Setzer A., Vermote E., Reagan J.A., Kaufman Y. J., Nakajima T., Lavenu F., Jankowiak I., Smirnov A., 1998, AERONET - a federated instrument network and data archive for aerosol characterization, Remote Sens. Environ., 66 (1), 1-16.
  • 14.Holton J.R., Curry J.A., Pyle J.A., 2003, Encyclopaedia of atmospheric science, Vol. 1, Acad. Press, Amsterdam, Boston, 53 pp.
  • 15.Ichoku C., Kaufman Y. J., Remer L.A., Levy R., 2004, Global aerosol remote sensing from MODIS, Adv. Space Res., 34, 820-827.
  • 16.Jeong M.-J, Li Z., Andrews E., Tsay S.-C., 2007, Effect of aerosol humidification on the column aerosol optical thickness over the Atmospheric Radiation Measurement Southern Great Plains site, J. Geophys. Res., 112, D10202, doi:10.1029/2006JD007176.
  • 17.Kastendeuch P.P., Najjar G., 2003, Upper-air wind profiles investigation for tropospheric circulation study, Theor. Appl. Climatol., 75, 149-165.
  • 18.Kauffman Y. J., Smirnov A., Holben B.N., Dubovik O., 2001, Baseline maritime aerosol: methodology to derive the optical thickness and scattering properties, Geophys. Res. Lett., 28 (17), 3251-3254.
  • 19.Kratzer S., Vinterhav C., 2010, Improvement of MERIS level 2 products in Baltic Sea coastal areas by applying the Improved Contrast between Ocean and Land processor (ICOL) - data analysis and validation, Oceanologia, 52 (2), 211-236.
  • 20.Kuśmierczyk-Michulec J., 2009, Angström coefficient as an indicator of the atmospheric aerosol type for a well-mixed atmospheric boundary layer: Part 1: Model development, Oceanologia, 51 (1), 5-38.
  • 21.Kuśmierczyk-Michulec J., de Leeuw G., Gonzalez C.R., 2002, Empirical relationships between mass concentration and Angström parameter, Geophys. Res. Lett., 29 (7), 1145, doi:10.1029/2001GL014128.
  • 22.Kuśmierczyk-Michulec J., Marks R., 2000, The influence of sea-salt aerosols on the atmospheric extinction over the Baltic and North Seas, J. Aerosol Sci., 31 (11), 1299-1316.
  • 23.Kuśmierczyk-Michulec J., Rozwadowska A., 1999, Seasonal changes of the aerosol optical thickness for the atmosphere over the Baltic Sea - preliminary results, Oceanologia, 41 (2), 127-145.
  • 24.Kuśmierczyk-Michulec J., Schulz M., Ruellan S., Krüger O., Plate E., Marks R., de Leeuw G., Cachier H., 2001, Aerosol composition and related optical properties in the marine boundary layer over the over the Baltic Sea, J. Aerosol Sci., 32 (8), 933-955.
  • 25.Niemi J.V., Tervahattu H., Koskentalo T., Sillanpää M., Hillamo R., Kumala M., Vehkamäki H., 2003, Studies on the long-range transport episodes of particles in Finland in March and August 2002, No. 10, Helsinki Metropolit. Area Council, Helsinki, 58 pp.
  • 26.Niemi J.V., Tervahattu H., Vehkamäki H., Martikainen J., Laakso L., Kumala M., Aarnio P., Koskentalo T., Sillanpää M., Makkonen U., 2005, Characterization of aerosol particles episodes in Finland caused by wildfires in Eastern Europe, Atmos. Chem. Phys., 5 (8), 2299-2310.
  • 27.O'Neill N.T., Eck T. F., Holben B.N., Smirnov A., Dubovik O., Royer A., 2001, Bimodal size distribution influence on the variation of Angstrom derivatives in spectral and optical depth space, J. Geophys. Res., 106 (D9), 9787-9806.
  • 28.Pan W., Tatang M.A., McRae G. J., Prinn R.G., 1997, Uncertainty analysis of direct radiative forcing by anthropogenic sulfate aerosols, J. Geophys. Res., 102 (D18), 21 915-21 924.
  • 29.Petelski T., 2003, Marine aerosol fluxes over open sea calculated from vertical concentration gradients, J. Aerosol Sci., 34 (3), 359-371.
  • 30.Pugatshova A., Reinart A., Tumm E., 2007, Features of the multimodal aerosol size distribution depending on the air mass origin in the Baltic region, Atmos. Environ., 41 (21), 4408-4422.
  • 31.Rapti A. S., 2005, Spectral optical atmospheric thickness dependence on the specific humidity in the presence of continental and marine air masses, Atmos. Res., 78 (1-2), 13-32.
  • 32.Reiff J., Forbes G. S., Spieksma F., Reynders J. J., 1986, African dust reaching Northwestern Europe: a case study to verify trajectory calculation, J. Clim. Appl. Meteorol., 25 (1), 1543-1567.
  • 33.Rolph G.D., 2003, Real-time Environmental Applications and Display system (READY) Website, http://www.arl.noaa.gov/ready/hysplit4.html), NOAA Air Resour. Lab., Silver Spring, MD.
  • 34.Ruddick K.G., Ovidio F., Rijkeboer M., 2000, Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters, Appl. Optics, 39 (6), 897-912.
  • 35.Satheesh S.K., Moorthy K.K., 2005, Radiative effects of natural aerosols: a review, Atmos. Environ., 39 (11), 2089-2110.
  • 36.Schroeder Th., Behnert I., Schaale M., Fischer J., Doerffer R., 2007, Atmospheric correction algorithm for MERIS above case-2 waters, Int. J. Remote Sens., 28 (7), 1469-1486.
  • 37.Seinfeld J.H., Pandis S.N., 1998, Atmospheric chemistry and physics: from air pollution to climate change, Wiley, New York, 1326 pp.
  • 38.Smirnov A., Holben B.N., Eck T. F., Dubovik O., Slutsker I., 2000, Cloud-screening and quality control algorithms for the AERONET database, Remote Sens. Environ., 73 (3), 337-349.
  • 39.Smirnov A., Holben B.N., Eck T. F., Dubovik O., Slutsker I., 2003, Effect of wind speed on columnar aerosol optical properties at Midway Island, J. Geophys. Res., 108 (D24), 10 4802 pp.
  • 40.Smirnov A., Royer A., O'Neill N.T., Tarussov A., 1994, A study of link between synoptic air mass type and atmospheric optical parameters, J. Geophys. Res., 99 (D10), 20 967-20 982.
  • 41.Smirnov A., Villevalde Y., O'Neill N.T., Royer A., Tarussov A., 1995, Aerosol optical depth over the ocean: analysis in term of synoptic air mass type, J. Geophys. Res., 100 (D8), 16 639-16 650.
  • 42.Stigebrandt A., Gustafsson B.G., 2003, Response of the Baltic Sea to climate change-theory and observations, J. Sea Res., 49 (4), 243-256.
  • 43.Swietlicki E., Zhou J., Berg O.H., Martinsson B.G., Frank G., Cederfelt S.-I., Dusek U., Berner A., Birmilli W., Wiedensohler A., Yuskiewicz B., Bower K.N., 1999, A closure study of sub-micrometer aerosol particle hygroscopic behaviour, Atmos. Res., 50 (3-4), 205-240.
  • 44.Tang I.N., 1996, Chemical and size effects of hygroscopic aerosols on light scattering coefficient, J. Geophys. Res., 101 (D14), 19 245-19 250.
  • 45.Terpugova S.A., PanchenkoM.V., Kozlov V. S., Polkin V.V., Yausheva E.P., 2004, The study of the growth factor of the aerosol scattering coefficient in the near-ground layer of the atmosphere in West Siberia, European Aerosol Conference, Budapest.
  • 46.Weller M., Leiterer U., 1998, Experimental data on spectral aerosol optical thickness and its global distribution, Beitr. Phys. Atmos., 61 (1), 1-9.
  • 47.Zieliński T., 2006, Fizyczne właściwości przywodnej warstwy aerozolu w brzegowym obszarze morza, Rozpr. Monogr. 18, IO PAN, Sopot, 164 pp.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0008-0014
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.