PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hipoteza Serre'a o modularności i nowe dowody Wielkiego Twierdzenia Fermata

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
Rocznik
Strony
3--24
Opis fizyczny
Bibliogr. 73 poz.
Twórcy
Bibliografia
  • [1] M. Artin, A. Grothendieck, J.-L. Verdier, SGA Ą: Theorie des Topos et Cohomologie Etale des Schemas, Lect. Notes in Math., vol. 269, 270, 305, Springer, 1972/73.
  • [2] A. Ash, Galois representations attached to mod p cohomology of GL(n,Z), Duke Math. J. 65 (1992), no. 2, 235-255.
  • [3] A. Ash, D. Doud, D. Pollack, Galois representations with conjectural connections to arithmetic cohomology, Duke Math. J. 112 (2002), no. 3, 521-579.
  • [4] A. Ash, W. Sinnott, An analogue of Serre's conjecture for Galois representations and Hecke eigenclasses in the mod p cohomology of GL(n,Z), Duke Math. J. 105 (2000), no. 1, 1-24.
  • [5] L. Berger, H. Li, H. J. Zhu, Construction of some families of 2-dimensional crystalline representations, Math. Ann. 329 (2004), no. 2, 365-377.
  • [6] G. Bockle, C. Khare, Mod I representations of arithmetic fundamental groups. I. An analog of Serve''s conjecture for function fields, Duke Math. J. 129 (2005), no. 2, 337-369.
  • [7] J. Bosman, On the computation of Galois representations asociated to level one modular forms, preprint 2007.
  • [8] C. Breuil, B. Conrad, F. Diamond, R. Taylor, On the modularity of elliptic curves overQ: wild 3-adic exercises, J. Amer. Math. Soc. 14 (2001), no. 4, 843-939 (electronic).
  • [9] A. Brumer, K. Kramer, Non-existence of certain semistable abelian varieties, Manuscripta Math. 106 (2001), no. 3, 291-304.
  • [10] I. Bucur, A. Grothendieck, C. Houzel, L. Illusie, J.-P. Jouanolou, J.-P. Serre, SGA 5: Cohomologie l-adique et fonctions L, Lect. Notes in Math., vol. 589, Springer, 1977.
  • [11] K. Buzzard, On level-lowering for mod 2 representations, Math. Res. Lett. 7 (2000), no. 1, 95-110.
  • [12] K. Buzzard, F. Diamond, F. Jarvis, On Serre's conjecture for mod I Galois representations over totally real number fields, preprint 2005.
  • [13] F. Calegari, Mod p representations on elliptic curves, Pacific J. Math. 225 (2006), no. 1, 1-11.
  • [14] H. Carayol, Sur les representations galoisiennes modulo I attachees aux formes modulaires, Duke Math. J. 59 (1989), no. 3, 785-801.
  • [15] B. Conrad, Modular Forms and the Ramanujan Conjecture, książka w przygotowaniu.
  • [16] A. Dąbrowski, Modularność krzywych eliptycznych i Wielkie Twierdzenie Fermata, Wiad. Mat. 43 (2007), 3-47.
  • [17] P. Deligne, Formes modulaires et representations l-adiąues, Lect. Notes in Math., vol. 179, Springer-Verlag, 1971, 139-172. Seminaire Bourbaki No. 355.
  • [18] P. Deligne, J.-P. Serre, Formes modulaires de poids 1, Ann. Sci. Ecole Norm. Sup. (4) 7 (1974), 507-530 (1975).
  • [19] F. Diamond, The refined conjecture of Serre, Elliptic curves, modular forms, & Fermat's last theorem (Hong Kong, 1993), Ser. Number Theory, I, Int. Press, Cambridge, MA, 1995, 22-37.
  • [20] F. Diamond, On deformation rings and Hecke rings, Ann. of Math. 144 (1996), no. 1, 137-166.
  • [21] F. Diamond, An extension of Wiles' results, Modular forms and Fermat's last theorem (Boston, MA, 1995), Springer, New York, 1997, 475-489.
  • [22] F. Diamond, J. Shurman, A first course in modular forms, Graduate Texts in Mathematics, vol. 228, Springer-Verlag, New York, 2005.
  • [23] L. V. Dieulefait, Existence of families of Galois representations and new cases of the Fontaine-Mazur conjecture, J. Reine Angew. Math. 577 (2004), 147-151.
  • [24] L. V. Dieulefait, Remarks on Serre's modularity conjecture, preprint 2006.
  • [25] D. Doud, Supersingular Galois representations and a generalization of a conjecture of Serre, Experiment. Math. 16 (2007), no. 1, 119-128.
  • [26] B. Edixhoven, Serre's conjecture, Modular forms and Fermat'g last theorem (Boston, MA, 1995), Springer, New York, 1997, 209-242.
  • [27] J. S. Ellenberg, Serre's conjecture over F9, Ann. of Math. 161 (2005), no. 3, 1111-1142.
  • [28] J.-M. Fontaine, B. Mazur, Geometric Galois representations, Elliptic curves, modular forms, & Fermat's last theorem (Hong Kong, 1993), Ser. Number Theory, I, Int. Press, Cambridge, MA, 1995, 41-78.
  • [29] G. Frey, Links between stable elliptic curves and certain Diophantine equations, Ann. Univ. Sarav. Ser. Math. 1 (1986), no. 1, iv+40.
  • [30] K. Fujiwara, Deformation rings and Hecke algebras in totally real case, preprint 1999.
  • [31] D. Gaitsgory, On de Jong's conjecture, Israel J. Math. 157 (2007), 155-191.
  • [32] A. Herremans, A combinatorial interpretation of Serve's conjecture on modular Galois representations, Ann. Inst. Fourier (Grenoble) 53 (2003), no. 5, 1287-1321.
  • [33] K. Hulek, R. Kloosterman, M. Schiitt, Modularity of Calabi-Yau varieties, Global aspects of complex geometry, Springer, Berlin, 2006, 271-309.
  • [34] C. Khare, Serre's modularity conjecture: the level one case, Duke Math. J. 134 (2006), no. 3, 557-589.
  • [35] C. Khare, Modularity of Galois representations and motives with good reduction properties, J. Ramanujan Math. Soc. 22 (2007), no. 1, 75-100.
  • [36] C. Khare, Serre's modularity conjecture: a survey of the level one case, L-functions and Galois representations, London Math. Soc. Lecture Note Ser., vol. 320, Cambridge Univ. Press, Cambridge, 2007, 270-299.
  • [37] C. Khare, J.-P. Wintenberger, On Serve's reciprocity conjecture for 2-dimensional mod p representations o/Gal(Q/Q), preprint 2004.
  • [38] C. Khare, J.-P. Wintenberger, Serre's modularity conjecture (I), preprint 2006.
  • [39] C. Khare, J.-P. Wintenberger, Serre's modularity conjecture (II), preprint 2006.
  • [40] M. Kisin, Moduli of finite flat group schemes and modularity, Ann. Math. (2009).
  • [41] M. Kisin, Modularity of 2-adic Barsotti-Tate representations, preprint 2007.
  • [42] A. Kraus, Determination du poids et du conducteur associes aux representations des points de p-torsion d'une courbe elliptique, Dissertationes Math. 364 (1997).
  • [43] R. Livne, On the conductors of mod I Galois representations coming from modular forms, J. Number Theory 31 (1989), no. 2, 133-141.
  • [44] J. Manoharmayum, On the-modularity of certain GL2{V7) Galois representations, Math. Res. Lett. 8 (2001), no. 5-6, 703-712.
  • [45] B. Mazur, An introduction to the deformation theory of Galois representations, Modular forms and Fermat's last theorem (Boston, MA, 1995), Springer, New York, 1997, 243-311.
  • [46] J. Oesterle, Nouvelles approches du utheoremen de Fermat, Asterisque 161-162 (1988), Exp. No. 694, 4, 165-186 (1989). Seminaire Bourbaki, Vol. 1987/88.
  • [47] R. Ramakrishna, On a variation of Mazur's deformation functor, Compositio Math. 87 (1993), no. 3, 269-286.
  • [48] R. Ramakrishna, Deforming Galois representations and the conjectures of Serre and Fontaine-Mazur, Ann. of Math. 156 (2002), no. 1, 115-154.
  • [49] S. Ramanujan, On certain arithmetical functions, Trans. Cambridge Phil. Soc. 22 (1916), 159-184.
  • [50] K. A. Ribet, Galois representations attached to eigenforms with Nebentypus, Modular functions of one variable, V (Proc. Second Internat. Conf., Univ. Bonn, Bonn, 1976), Springer, Berlin, 1977, 17-51. Lecture Notes in Math., Vol. 601.
  • [51] K. A. Ribet, On modular representations of Gal(Q/Q) arising from modular forms, Invent. Math. 100 (1990), no. 2, 431-476.
  • [52] K. A. Ribet, Galois representations and modular forms, Bull. Amer. Math. Soc. (N.S.) 32 (1995), no. 4, 375-402.
  • [53] K. A. Ribet, Abelian varieties over Q and modular forms, Modular curves and abelian varieties, Progr. Math., vol. 224, Birkhauser, Basel, 2004, 241-261.
  • [54] K. A. Ribet, W. A. Stein, Lectures on Serre's conjectures, Arithmetic algebraic geometry (Park City, UT, 1999), IAS/Park City Math. Ser., vol. 9, Amer. Math. Soc, Providence, RI, 2001, 143-232.
  • [55] D. Savitt, Modularity of some potentially Barsotti-Tate Galois representations, Compos. Math. 140 (2004), no. 1, 31-63.
  • [56] R. Schoof, Abelian varieties over Q with bad reduction in one prime only, Compos. Math. 141 (2005), no. 4, 847-868.
  • [57] J.-P. Serre, Abelian l-adic representations and elliptic curves, McGill University lecture notes written with the collaboration of Willem Kuyk and John Labute, W. A. Benjamin, Inc., New York-Amsterdam, 1968.
  • [58] J.-P. Serre, line interpretation des congruences relatives a la fonction r de Ramanujan, Seminaire Delange-Pisot-Poitou: 1967/68, Theorie des Nombres, Fasc. 1, Exp. 14, Secretariat mathematique, Paris, 1969, 17.
  • [59] J.-P. Serre, Proprietes galoisiennes des points d''ordre fini des courbes elliptiques, Invent. Math. 15 (1972), no. 4, 259-331.
  • [60] J.-P. Serre, Formes modulaires et fonctions zeta p-adiques, Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, 1972), Springer, Berlin, 1973, 191-268. Lecture Notes in Math., Vol. 350.
  • [61] J.-P. Serre, Valeurs propres des operateurs de Hecke modulo I, Journees Arithmetiques de Bordeaux (Conf., Univ. Bordeaux, 1974), Soc. Math. France, Paris, 1975, 109-117. Asterisque, Nos. 24-25.
  • [62] J.-P. Serre, Sur Its representations modulaires de degre 2 de Gal(Q/Q), Duke Math. J. 54 (1987), no. 1, 179-230.
  • [63] N. I. Shepherd-Barron, R. Taylor, Mod 2 and mod 5 icosahedral representations, J. Amer. Math. Soc. 10 (1997), no. 2, 283-298.
  • [64] G. Shimura, Introduction to the arithmetic theory of automorphic functions, Kanó Memorial Lectures, No. 1, Publications of the Mathematical Society of Japan, No. 11. Iwanami Shoten and Princeton Univ. Press, Princeton, 1971.
  • [65] C. M. Skinner, A. J. Wiles, Residually reducible representations and modular forms, Inst. Hautes Etudes Sci. Publ. Math. 89 (1999), 5-126 (2000).
  • [66] C. M. Skinner, A. J. Wiles, Nearly ordinary deformations of irreducible residual representations, Ann. Fac. Sci. Toulouse Math. (6) 10 (2001), no. 1, 185-215.
  • [67] H. P. F. Swinnerton-Dyer, On l-adic representations and congruences for coefficients of modular forms, Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, 1972), Springer, Berlin, 1973, 1-55. Lecture Notes in Math., Vol. 350.
  • [68] J. Tate, The non-existence of certain Galois extensions of Q unrami-fied outside 2, Arithmetic geometry (Tempe, AZ, 1993), Contemp. Math., vol. 174, Amer. Math. Soc, Providence, RI, 1994, 153-156.
  • [69] R. Taylor, A. Wiles, Ring-theoretic properties of certain Hecke algebras, Ann. of Math. 141 (1995), no. 3, 553-572.
  • [70] R. Taylor, Remarks on a conjecture of Fontaine and Mazur, J. Inst. Math. Jussieu 1 (2002), no. 1, 125-143.
  • [71] L. C. Washington, Introduction to cyclotomic fields, 2nd ed., Graduate Texts in Mathematics, vol. 83, Springer-Verlag, New York, 1997.
  • [72] A. Wiles, Modular elliptic curves and Fermat's last theorem, Ann. of Math. 141 (1995), no. 3, 443-551.
  • [73] J.-P. Wintenberger, La conjecture de modularite de Serre: le cas de con-ducteur 1 (d'apres C. Khare), Asterisque 311 (2007), Exp. No. 956, viii, 99-121. Seminaire Bourbaki. Vol. 2005/2006.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0005-0093
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.