Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The problem considered in this article is how to detect and measure resemblances between swarm behaviours. The solution to this problem stems from an extension of recent work on tolerance near sets and image correspondence. Instead of considering feature extraction from subimages in digital images, we compare swarm behaviours by considering feature extraction from subsets of tuples of feature-values representing the behaviour of observed swarms of organisms. Thanks to recent work on the foundations of near sets, it is possible to formulate a rigorous approach to measuring the extent that swarm behaviours resemble each other. Fundamental to this approach is what is known as a recent description-based set intersection, a set containing objects with matching or almost the same descriptions extracted from objects contained in pairs of disjoint sets. Implicit in this work is a new approach to comparing information tables representing N. Tinbergen’s ethology (study of animal behaviour) and direct result of recent work on what is known as rough ethology. Included in this article is a comparison of recent nearness measures that includes a new form of F. Hausdorff’s distance measure. The contribution of this article is a tolerance near set approach to measuring the degree of resemblance between swarm behaviours.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
533--552
Opis fizyczny
Bibliogr. 47 poz., tab., wykr.
Twórcy
autor
autor
- Dept. of Applied Comp. Sc., University of Winnipeg, Winnipeg, Manitoba R3B 2E9 Canada, s.ramanna@uwinnipeg.ca
Bibliografia
- [1] Armstrong, H., Brasier, M.: Microfossils, 2nd Ed., Blackwell Publishing, Oxford, UK, 2005.
- [2] Bartol,W., Miró, J., Pióro, K., Rosselló, F.: On the coverings by tolerance classes, Inf. Sci. Inf. Comput. Sci., 166(1-4), 2004, 193-211, ISSN 0020-0255.
- [3] Beni, G.: The Concept of Cellular Robotic Systems, Proc. 1988 IEEE Intl. Symp. on Intelligent Control, 1988, 57-62.
- [4] Beni, G.,Wang, J.: Swarm Intelligence, Proc. Seventh AnnualMeeting of the Robotic Society of Japan, 1989, 425-428.
- [5] Bonabeau, E.and Dorigo, M., Theraulaz, G.: Swarm Intelligence. From Natural to Artificial Systems, U.K, Oxford University Press, 1999.
- [6] Cohen, A., Martin, J., Kornicker, L.: Homology of Holocene ostracode biramous with those of other crustaceans: the protopod, epipod, exopod and endopod, Lethia, 31, 1998, 251-265.
- [7] Cristian, H., Maximino, A.: New tools for characterizing swarming systems: A comparison of minimal models, Physica A, 47, 2008, 2809-2822.
- [8] Dorigo, M.: Ottimizzazione, Apprendimento Automatico, ed Algoritmi Basati su Metafore Naturale, Ph.D. Thesis, Politecnico di Milano, 1992.
- [9] Ebling, M., Loreto, M. D., Presley, M., Wieland, F., Jefferson, D.: An Ant Foraging Model Implemented on the Time Warp Operating System, Proceedings of the SCS Multiconference on Distributed Simulation, 2, 1989, 1942-1948.
- [10] Engelking, R.: General Topology, revised & completed edition, Heldermann Verlag, Lemgo, Germany, 1989.
- [11] Fashandi, H., Peters, J., Ramanna, S.: L2 norm length-based image similarity measures: Concrescence of image feature histogram distances, Signal and Image Processing, Int. Assoc. of Science & Technology for Development, Honolulu, Hawaii, 2009, 178-185.
- [12] Hassanien, A., Abraham, A., Peters, J., Schaefer, G., Henry, C.: Rough sets and near sets in medical imaging: A review, IEEE Trans. Info. Tech. in Biomedicine, 2009, Digital object identifier: 10.1109/TITB.2009.2017017, in press.
- [13] Hausdorff, F.: Dimension und äusseres Mass, Math. Ann., 79, 1919, 157-179.
- [14] Hausdorff, F.: Set Theory, trans. by J.R. Aumann, et al., AMS Chelsea Publishing, Providence, Rhode Island, 1957.
- [15] Henry, C.: Reinforcement Learning in Biologically-Inspired Collective Robotics: A Rough Set Approach, Master Thesis, Dept. Elec. Comp. Engg., 2006.
- [16] Henry, C., Peters, J.: Near set evaluation and recognition (NEAR) system, Tech. rep., Computational Intelligence Laboratory, University of Manitoba, TR-2009-015, Technical report, oct 2009.
- [17] Henry, C., Peters, J.: Perception-Based Image Analysis, Int. J. of Bio-Inspired Computation, 2(2), 2009, in press.
- [18] Henry, C., Peters, J. F.: Near Set Evaluation and Recognition (NEAR) System, Technical report, Computational Intelligence Laboratory, University of Manitoba, 2009, UM CI Laboratory Technical Report No. TR-2009-015.
- [19] Jänich, K.: Topology, Springer-Verlag, Berlin, 1984.
- [20] Kennedy, J., Eberhart, R.: Particle swarm optimization, Proc. of the IEEE Int. Conf. on Neural Networks, 2, 1995, 1942-1948.
- [21] Mahalanobis, P. C.: On the generalized distance in statistics, Proc. Nat. Inst. Sci. India, 2, 1936, 49-55.
- [22] Manjunath, B. S., Ma,W. Y.: Texture features for browsing and retrieval of image data, Pattern Analysis and Machine Intelligence, IEEE Transactions on, 18(8), 1996, 837-842.
- [23] MATLAB: MATLAB Users Guide, The Mathworks, Inc., Natick, MA, 1994-2007.
- [24] Meghdadi, A., Peters, J., Ramanna, S.: Tolerance classes in measuring image resemblance, Intelligent Analysis of Images & Videos, 2009, , (2009), in press.
- [25] Mogilner, A., Edelstein-Keshet, L., Bent, L., Spiros, A.: Mutual interactions, potentials, and individual distance in a social aggregation, Journal of Mathematical Biology, 47, 2003, 353-389.
- [26] Pal, S., Peters, J.: Rough Fuzzy Image Analysis. Foundations and Methodologies., CRC Press, Taylor & Francis Group, Sept., 2010, ISBN 978-1-4398-0329-5.
- [27] Peters, J.: Near sets. General theory about nearness of objects, Applied Mathematical Sciences, 1(53), 2007, 2609-2029.
- [28] Peters, J.: Near sets. Special theory about nearness of objects, Fundamenta Informaticae, 75(1-4), 2007, 407-433.
- [29] Peters, J.: Classification of perceptual objects by means of features, Int. J. of Info. Technology & Intelligent Computing, 3(2), 2008, 1-35.
- [30] Peters, J.: Tolerance near sets and image correspondence, Int. J. of Bio-Inspired Computation, 4(1), 2009, 239-445.
- [31] Peters, J., Henry, C.: Reinforcement Learning with Approximation Spaces, Fundamenta Informaticae, (2,3), 2006, 323-349.
- [32] Peters, J., Henry, C.: Set Theory Operations in Measuring Image Resemblance, Applied Mathematics and Computation, 2009, submitted.
- [33] Peters, J., Henry, C., Ramanna, S.: Reinforcement learning in swarms that learn, Proc. of 2005 IEEE/WIC/ACM International Conference on Intelligent Agent Technology, 2005, 400-406.
- [34] Peters, J., Henry, C., Ramanna, S.: Rough Ethograms : Study of Intelligent System Behavior, Proc. of New Trends in Intelligent Information Processing and Web Mining, 2005, 117-126.
- [35] Peters, J., Puzio, L.: Image analysis with anistropic wavelet-based nearness measures, International Journal of Computational Intelligence Systems, 3(2), 2009, 1-17.
- [36] Peters, J., Ramanna, S.: Affinities between perceptual granules: Foundations and perspectives, in: Human-Centric Information Processing Through Granular Modelling SCI 182 (A. Bargiela, W. Pedrycz, Eds.), Springer-Verlag, Berlin, 2009, 49-66.
- [37] Peters, J., Wasilewski, P.: Foundations of Near Sets, Information Sciences. An International Journal, 179 (18), 2009, 3091-310, Digital object identifier: doi:10.1016/j.ins.2009.04.018.
- [38] Peters, J. F.: Rough ethology: Towards a Biologically Inspired Study of Collective Behavior in Intelligent Systems with Approximation Spaces, Transactions on Rough Sets, LNCS 3400, 2005, 153-174.
- [39] Poicaré, H.: Mathematics and Science: Last Essays, trans. by J.W. Bolduc, Kessinger Pub., N.Y., 1913.
- [40] Puzicha, J.: Distribution-based Image Similarity, in: State-of-the-Art in Content-Based Image and Video Retrieval [Dagstuhl Seminar, 5-10 December 1999], Kluwer, B.V., 143-164.
- [41] Rogers, C.: Hausdorff Measures, Cambridge, UK, Cambridge U Press, 1970.
- [42] Schroeder, M., Wright, M.: Tolerance and weak tolerance relations, Journal of Combinatorial Mathematics and Combinatorial Computing, 11, 1992, 123-160.
- [43] Smeulders, A. W. M., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based image retrieval at the end of the early years, Pattern Analysis and Machine Intelligence, IEEE Transactions on, 22(12), 2000, 1349-1380.
- [44] Sossinsky, A.: Tolerance space theory and some applications, Acta Applicandae Mathematicae: An International Survey Journal on Applying Mathematics and Mathematical Applications, 5(2), 1986, 137-167.
- [45] Sutton, R. S., Barto, A. G.: Reinforcement Learning: An Introduction, MIT Press, Cambridge,MA, 1998.
- [46] Tinbergen, N.: Social Behaviour in Animals. With Special Reference to Vertebrates, The Scientific Book Club, London, 1953.
- [47] Zeeman, E.: The topology of the brain and the visual perception, Prentice Hall, New Jersey, 1965, In K.M. Fort, Ed., Topology of 3-manifolds and Selected Topics, 240-256.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0005-0092