Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Population based metaheuristics are commonly used for global optimization problems. These techniques depend largely on the generation of initial population. A good initial population may not only result in a better fitness function value but may also help in faster convergence. Although these techniques have been popular since more than three decades very little research has been done on the initialization of the population. In this paper, we propose a modified Particle Swarm Optimization (PSO) called Improved Constraint Particle Swarm Optimization (ICPSO) algorithm for solving constrained optimization. The proposed ICPSO algorithm is initialized using quasi random Vander Corput sequence and differs from unconstrained PSO algorithm in the phase of updating the position vectors and sorting every generation solutions. The performance of ICPSO algorithm is validated on eighteen constrained benchmark problems. The numerical results show that the proposed algorithm is a quite promising for solving constraint optimization problems.
Wydawca
Czasopismo
Rocznik
Tom
Strony
511--531
Opis fizyczny
Bibliogr. 28 poz., tab., wykr.
Twórcy
autor
autor
autor
- Machine Intelligence Research Labs (MIR Labs), Scientific Network for Innovation and Research Excellence, P.O. Box 2259 Auburn, Washington 98071-2259, USA., ajith.abraham@ieee.org
Bibliografia
- [1] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, "A fast and elitist multi objective genetic algorithm: NSGAII", IEEE Transactions on Evolutionary Computation, vol. 6, no. 2, 2002.
- [2] A. P. Engelbrecht, "Fundamentals of Computational Swarm Intelligence", England : John Wiley & Sons Ltd., 2005.
- [3] G. Coath, S. K. Halgamuge, "A Comparison of Constraint- Handling Methods for the Application of Particle Swarm Optimization to Constrained Nonlinear Optimization Problems", In Proc. of the IEEE Congress on Evolutionary Computation, Vol. 4, pp. 2419 - 2425, 2003.
- [4] S. Koziel, Z. Michalewicz, "Evolutionary Algorithms, Homomorphus Mappings, and Constrained Optimization", Evolutionary Computation, Vol. 7(1), pp. 19 - 44, 1999.
- [5] Z. Michalewicz, "A Survey of Constraint Handling Techniques in Evolutionary Computation Methods", In Proc. of the Fourth Annual Conf. on Evolutionary Programming, pp. 135 - 155, 1995.
- [6] Y. Li, M. Gen, "Non-linear mixed integer programming problems using genetic algorithm and penalty function", In Proc. of 1996 IEEE Int. Conf. on SMC, pp. 2677 - 2682, 1996.
- [7] Y. Takao, M. Gen, T. Takeaki, Y. Li, "A method for interval 0-1 number non-linear programming problems using genetic algorithm", Computers and Industrial Engineering, Vol. 29, pp. 531 - 535, 1995.
- [8] J. F. Tang, D.Wang, et al., "A hybrid genetic algorithm for a type of nonlinear programming problem", Computer Math. Applic, Vol. 36(5), pp. 11 - 21, 1998.
- [9] M. Dorigo, V.Maniezzo, A. Colori, "Ant system optimization by a colony of cooperating agents", IEEE Trans. on system, Man, and Cybernetics, Vol. 26(1), pp. 28 - 41, 1996.
- [10] J. Kennedy, R. Eberhart, "Particle Swarm Optimization", IEEE International Conference on Neural Networks (Perth, Australia), IEEE Service Center, Piscataway, NJ, IV: pp. 1942-1948, 1995.
- [11] R. Storn and K. Price, "Differential Evolution - a simple and efficient Heuristic for global optimization over continuous spaces", Journal Global Optimization. 11, 1997, pp. 341 - 359.
- [12] S. Kimura and K. Matsumura, "Genetic Algorithms using low discrepancy sequences", in proc of GEECO 2005, pp. 1341 - 1346.
- [13] Nguyen X. H., Nguyen Q. Uy., R. I. Mckay and P. M. Tuan, "Initializing PSO with Randomized Low-Discrepancy Sequences: The Comparative Results", In Proc. of IEEE Congress on Evolutionary Algorithms, 2007, pp. 1985 - 1992.
- [14] K.E. Parsopoulos and M.N. Vrahatis, "Particle Swarm Optimization in noisy and continuously changing environments", in Proceedings of International Conference on Artificial Intelligence and soft computing, 2002, pp. 289-294.
- [15] R. Brits and A.P. Engelbrecht and F. van den Bergh, "A niching Particle Swarm Optimizater", In proceedings of the fourth Asia Pacific Conference on Simulated Evolution and learning, 2002, pp 692 - 696.
- [16] R. Brits and A.P. Engelbrecht and F. van den Bergh, "Solving systems of unconstrained Equations using Particle Swarm Optimization", In proceedings of the IEEE Conference on Systems, Man and Cybernetics, Vol. 3pp. 102 - 107, 2002.
- [17] Millie Pant, Radha Thangaraj and Ajith Abraham "Improved Particle Swarm Optimization with Low discrepancy Sequences", IEEE Cong. on Evolutionary Computation (CEC'08), Hong Kong, 2008.
- [18] Karin Zielinski and Rainer Laur : "Constrained Single-Objective Optimization Using Particle Swarm Optimization", IEEE Congress on Evolutionary Computation, Sheraton VancouverWall Centre Hotel, Vancouver, BC, Canada July 16-21, 2006, pp. 443 - 450
- [19] E. J. Gentle, "RandomNumber Generation and Monte Carlo Methods", Springer-Verlag, 1998.
- [20] D. E. Knuth, "The Art of Computer Programming", Semi numerical Algorithms, Vol. 2, Addison-Wesley, 1998.
- [21] J. G. van der Corput, Verteilungsfunktionen. Proc. Ned. Akad. v.Wet., 38: pp. 813-821, 1935.
- [22] J. Halton, "On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals," Numerische Mathematik, Vol. 2, 1960, pp. 84 - 90.
- [23] I. M. Sobol', "On the distribution of points in a cube and the approximate evaluation of integrals," USSR Computational Mathematics and Mathematical Physics, Vol. 7, 1967, pp. 86 - 112.
- [24] I. M. Sobol', "Uniformly distributed sequences with an additional uniform property," USSR Computational Mathematics and Mathematical Physics, Vol. 16, 1976, pp. 236 - 242.
- [25] J. Kennedy, "The Particle Swarm: Social Adaptation of Knowledge", IEEE International Conference on Evolutionary Computation (Indianapolis, Indiana), IEEE Service Center, Piscataway, NJ, 1997, pp. 303 - 308.
- [26] R. C. Eberhart and Y. Shi, "Particle Swarm Optimization: developments, Applications and Resources", IEEE Int. Conference on Evolutionary Computation, 2001, pp. 81 - 86.
- [27] Y. H. Shi and R. C. Eberhart, "A Modified Particle Swarm Optimizer", IEEE International Conference on Evolutionary Computation, Anchorage, Alaska, 1998, pp. 69 - 73.
- [28] Angel E. Mu?noz-Zavala, Arturo Hern?andez-Aguirre, Enrique R. Villa-Diharce and Salvador Botello-Rionda: "PESO+ for Constrained Optimization" IEEE Congress on Evolutionary Computation Sheraton Vancouver Wall Centre Hotel, Vancouver, BC, Canada July 16-21, 2006, pp. 231 - 238.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0005-0091