PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Robust Candidate Pruning Approach Based on the PSO-SVM for Fast Corner Detection with Noise Tolerance in Gray-Level Images

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a fast two-stage corner detector with noise tolerance. In the first stage, a novel candidate pruning approach based on PSO-SVM is proposed to select candidatecorner pixels which have great potential to be corners. In the second stage the Harris corner detector is employed to recognize real corners among the candidate-corner pixels. The parameters and feature selection of SVM classifier is optimized by using particle swarm optimization (PSO). The method takes advantage of the minimum structure risk of SVM and the quickly globally optimizing ability of PSO. Generally speaking, corners are considered as the junction of edges. Thus, edge pixels with a high gradient in more than one direction should be selected as candidate corners. Meanwhile, impulse noise often corrupts digital images while images are transmitted over an unreliable channel or are captured using a camera with faulty sensors. Noise-corrupted pixels usually cause serious false detection problems in most corner detectors. The proposed PSO-SVM candidate pruning approach detects noisy pixels and excludes them from being candidate corners to enhance the noise tolerance of the corner detector. Through the well-selection of candidate corners, the proposed candidate pruning approach can 1) enhance the noise tolerance capability, and 2) reduce the computational effort of the corner detectors.
Wydawca
Rocznik
Strony
491--510
Opis fizyczny
Bibliogr. 34 poz., fot., wykr.
Twórcy
autor
autor
  • Department of Computer Science and Information Engineering, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan, R.O.C, mtliu@cs.ccu.edu.tw
Bibliografia
  • [1] H. Kurihata, T. Takahashi, I. Ide, Y. Mekada, H. Murase, Y. Tamatsu, and T. Miyahara, Detection of raindrops on a window shield from an in-vehicle video camera, International Journal of Innovative Computing, Information and Control, vol.3, no.6, pp.1583-1591, 2007.
  • [2] B. Zhong and W. Liao, Direct curvature scale space: Theory and corner detection, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 29, no. 3, pp. 508 - 512, 2007.
  • [3] R. Mehrotra, S. Nichani, and N. Ranganathan, Corner detection, Pattern Recognition, vol. 23, pp. 1223-1233, 1990.
  • [4] C. Zhou, X. Wei, Q. Zhang and B. Xiao, Image reconstruction for face recognition based on fast ICA, International Journal of Innovative Computing, Information and Control, vol.4, no.7, pp.1723-1732, 2008.
  • [5] T.L. Arnow and A.C. Bovik, Foveated visual search for corners, IEEE Transactions on Image Processing, vol. 16, no. 3, pp. 813-823, 2007.
  • [6] M.Weng andM. He, Image detection based on susan method and integrated feature matching, International Journal of Innovative Computing, Information and Control, vol.4, no.3, pp.671-680, 2008.
  • [7] P. Wyatt and H. Nakai, Developing nonstationary noise estimation for application in edge and corner detection, IEEE Transactions on Image Processing, vol. 16, no. 7, pp. 1840 - 1853, 2007.
  • [8] A.Masood andM. Sarfraz, Corner detection by sliding rectangles along planar curves, Computers& Graphics, vol. 31, no. 3, pp. 440-448, 2007.
  • [9] Y.-Z. Wang, D. Yang and X.-H. Zhang, Robust corner detection based on multi-scale curvature product in B-spline scale space, Acta Automatica Sinica, vol. 33, no. 4, pp. 414-417, 2007.
  • [10] M. Banerjee and M.K. Kundu, Handling of impreciseness in gray level corner detection using fuzzy set theoretic approach, Applied Soft Computing, vol. 8, no. 4, pp. 1680-1691, 2008.
  • [11] A. Rattarangsi and R. Chin, Scale-based detection of corners of planar curves, IEEE Transactions on Pattern Analysis Machine Intelligence, vol. 14, no. 4, pp. 430-449, 1992.
  • [12] F. Mokhtarian and R. Suomela, Robust image corner detection through curvature scale space, IEEE Transactions on Pattern Analysis Machine Intelligence, vol. 20, no. 12, pp. 1376-1381, 1998.
  • [13] X. Gao, F. Sattar and R. Venkateswarlu, Multiscale corner detection of gray level images based on loggabor wavelet transform, IEEE Transactions on Circuits and Systems for Video Technology, vol. 17, no. 7, pp.868-875, 2007.
  • [14] K. Rangarajan,M. Shah, and D. V. Brackle, Optimal corner detector, Computer Vision, Graphics, and Image Processing, vol. 48, pp. 230-245, 1989.
  • [15] A. Singh and M. Shneier, Gray level corner detection a generalization and a robust real time implementation, Computer Vision, Graphics, and Image Processing, vol. 51, pp. 54-69, 1990.
  • [16] Z.Zheng, H.Wang and EKTech, Analysis of gray level corner detection, Pattern Recognition Letters, vol. 20, pp. 149-162, 1999.
  • [17] C. Harris and M. Stephens, "A combined corner and edge detector," Proc. of 4th Alvey Vision Conference, pp. 147-151, 1988.
  • [18] S. M. Smith and J. M. Brady, Susan-a new approach to low level image processing, International Journal of Computer Vision, vol. 23, no. 1, pp. 45-78, 1997.
  • [19] T. Chen and H. R. Wu, Space variant median filters for the Restoration of impulse noise corrupted images, IEEE Transactions on Circuits System II, Analog Digital Signal Processing, vol. 48, no. 8, pp. 784-789, 2001.
  • [20] P. I. Rockett, Performance assessment of feature detection algorithms: a methodology and case study on corner detectors, IEEE Transactions on Image Processing, vol.12, no. 12, pp. 1668-1676, 2003.
  • [21] M. Trajkovic and M. Hedley, Fast corner detection, Image and Vision Computing, vol. 16, no. 2, pp. 75-87, 1998.
  • [22] J. A. Noble, Finding corners, Image Vision Computation, vol. 6, pp. 121-128, 1988.
  • [23] S. Alkaabi and F. Deravi, Candidate pruning for fast corner detection, Electronic Letters, vol. 40, no. 1, pp. 18-19, 2004.
  • [24] P. Kovesi, Phase congruency detects corners and edges, Proc. of Australian Pattern Recognition Society Conference DICTA, pp. 309-318, 2003.
  • [25] F. Melgani and Y. Bazi, Classification of electrocardiogram signals with support vector machines and particle swarm optimization, IEEE Transactions on Information Technology in Biomedicine, vol. 12, pp. 667-677, 2008.
  • [26] C.-L. Huang and J.-F. Dun, A distributed PSO-SVM hybrid system with feature selection and parameter optimization, Applied Soft Computing, vol. 8, pp. 1381-1391, 2008.
  • [27] V. Vapnik, Statistical Learning Theory. New York: Wiley, 1998.
  • [28] K.-C. Lee, H. Jong, and K.-H. Sohn, Detection-estimation based approach for impulsive noise removal, Electronics Letter, vol. 34, pp. 449-450, 1998.
  • [29] T.-C. Lin and P.-T. Yu, Adaptive two-pass median filter based on support vector machine for image restoration, Neural Computation, vol. 16, pp. 333-354, 2004.
  • [30] S. J. Ko and Y. H. Lee, Center weighted median filters and their applications to image enhancement, IEEE Transactions on Circuits System, vol. 38, no. 9, pp. 984-993, 1991.
  • [31] T. Sun and Y. Neuvo, Detail-preserving median based filters in image processing, Pattern Recognition Letter, vol. 15, pp. 341-347, 1994.
  • [32] W. Zhou and Z. David, Progressive switching median filter for the removal of impulse noise from highly corrupted images, IEEE Transactions on Circuits System II, vol. 46, no. 1, pp. 78-80, 1999.
  • [33] E. Rosten, R. Porter, and T. Drummond, Faster and Better: A Machine Learning Approach to Corner Detection, IEEE Transactions on Pattern Analysis and Machine Intelligence, Accepted for future publication.
  • [34] X. Zhang, M. Lei, D. Yang, Y. Wang, and L. Ma, Multi-scale curvature product for robust image corner detection in curvature scale space, Pattern Recognition Letters, vol. 28, no. 5, pp. 545-554, 2007.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0005-0090
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.