PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Organics (COD) removal in dependence on loading of volatile fatty acids (VFA)

Identyfikatory
Warianty tytułu
PL
Usuwanie związków organicznych (ChZT) w zależności od obciążenia osadu czynnego ładunkiem lotnych kwasów tłuszczowych (LKT)
Języki publikacji
EN
Abstrakty
EN
The aim of the study was to estimate the influence of volatile fatty acids (VFA) loading on the contribution of the biomass growth, cell respiration, denitrification and poly-β-hydroxybutyrate (PHB) accumulation involved in COD removal by activated sludge. Kinetics of PHB production, PHB and COD consumption were determined. Experimental series were carried out in sequencing batch reactor. The amount of air entering SBR was maintained at the stable set-point of 2 mg O_2/L, oxygen depletion phase occurred in initial hours of the reaction time. SBR was fed with the mixture of municipal wastewater and supernatant from the digesters. Feast period of the external organic substrate availability (f_1) and famine period of little organics availability (f_2) were determined. With VFA loading (rVFA) increase from 0.029 to 0.052 g VFA/g VSS•d in the feast period, the effectiveness of COD removal depended on the use of organics for denitrification and internal PHB storage. PHB content in activated sludge increased from 0.2 to 0.35 Cmol/Cmol. In f1 biomass growth and cell respiration in COD removal decreased from 21 to 14% and from 12 to 5%, respectively. In the famine period the remaining organics were removed due to biomass growth and cell respiration, denitrification and internal PHB storage was not observed.
PL
W pracy określono udział usuwania związków organicznych (ChZT) ze ścieków w procesach przyrostu biomasy, oddychania komórkowego, denitryfikacji oraz syntezy kwasu poli-β-hydroksymasłowego (PHB) w zależności od obciążenia osadu czynnego ładunkiem lotnych kwasów tłuszczowych w ściekach. Ponadto przeanalizowano kinetykę magazynowania oraz degradacji kwasu poli-b-hydroksymasłowego. Eksperyment prowadzono w reaktorze sekwencyjnym SBR. Ilość powietrza doprowadzanego do reaktora była automatycznie ustawiona na poziomie 2 mg O_2/L, w początkowych godzinach fazy reakcji notowano fazę wyczerpywania tlenu w reaktorze. SBR był zasilany ściekami komunalnymi z udziałem wód nadosadowych z komór fermentacyjnych.
Rocznik
Strony
93--105
Opis fizyczny
Bibliogr. 18 poz., tab., wykr.
Twórcy
autor
  • University of Warmia and Mazury in Olsztyn, Department of Environmental Biotechnology, Sloneczna str. 45G,10-709 Olsztyn, Poland, bernat@uwm.edu.pl
Bibliografia
  • [1] Baraker P.S., P.L. Dold: Denitrification behavior in biological excess phosphorus removal activated sludge systems, Water Res., 30, 769-780 (1996).
  • [2] Barnard J.L.: Designing of wastewater treatment plants with activated sludge in: Designing philosophy and WWTP operation, Krakow 2000, 13-60 (in polish).
  • [3] Bernat K., I. Wojnowska-Baryła: Carbon source in aerobic denitrification, Biochem. Eng. J., 36, 116-122 (2007).
  • [4] Beun J.J., K. Dirks, M.C.M. Van Loosdrecht, J.J. Heijnen: Poly-b-hydroxybutyrte metabolism in dynamically fed mixed microbial cultures, Water Res., 36, 1167-1180 (2002).
  • [5] Beun J.J., F. Paletta, M.C.M. Van Loosdrecht, J.J. Heijnen. Stoichiometry and kinetics of poly-β-hydroxybutyrate metabolism in aerobic, slow growing activated sludge cultures, Biotechnol. Bioeng., 67, 379-389 (2000).
  • [6] Dochorn T., N. Dichtl, R. Kayser: Comparative investigations on COD-removal in sequencing batch reactor and continuous flow plants, Water Sci. Technol., 43, 45-52 (2001).
  • [7] Gerhardt P., R.G.E. Murray, W.A. Wood, N.R. Krieg: Methods for general and molecular bacteriology, American Society for Microbiology, Washington 1994.
  • [8] Ginestet P., J-M. Audic, V. Urbain, J-C. Block: Estimation of nitrifying bacterial activities by measuring oxygen uptake in the presence of metabolic inhibitors allylthiourea and azide, Appl. Environ. Microbiol., 64, 2266-2268 (1998).
  • [9] Gujer W., M. Henze: Activated sludge modelling and simulation, Water Sci. Technol., 23, 1011-1023 (1991).
  • [10] Kulikowska D., K. Dudek: Molasses as a carbon source for denitrification, Arch. Environ. Prot., 36, 35 - 45 (2010).
  • [11] Lim S.J., D.W Choi., W.G. Lee, S. Kwon, H.N. Chang: Volatile fatty production from food wastes and its applications to biological nutrient removal, Bioprocess Engin., 22, 543-545 (2000).
  • [12] Murnleitner E., T. Kuba, M.C.M. Van Loosdrecht, J.J. Heijnen: An integrated metabolic model for the aerobic and denitrifying biological phosphorus removal, Biotechnol. Bioeng., 54, 434-450 (1997).
  • [13] Oleszkiewicz, J.A., I.L. Barnard: Acid fermentation of the primary sludge for the improvement of phosphorus removal, Krakow 1997, 86-105 (in polish).
  • [14] Third K.A., N. Burnett, R. Cord-Ruwisch: Simultaneous nitrification and denitrification using stored substrate (PHB) as the electron donor in an SBR, Biotech. Bioen., 83, 706-720 (2003).
  • [15] Timmins M.R., W.R. Lenz, R.C. Fuller: Heterogeneous kinetics of the enzymatic degradation of poly(β-hydroxyalkanoates), Polymer., 38, 551-562 (1997).
  • [16] Van Aalst-van Leeuwen M.A., M.A. Pot, M.C.M. Van Loosdrecht, J.J. Heijnen: Kinetic modeling of poly(β-hydroxybutyrate) production and consumption by Paracoccus pantotrophus under dynamic substrate supply, Biotechnol. Bioeng., 55, 773-782 (1997).
  • [17] Van Niel E.W.J., L.A. Robertson, J.G. Kuenen: Rapid short-term poly-β-hydroxybutyrate production by Tiosphaera pantotropha in the presence of excess acetate, Enzyme Microb. Tech., 17, 977-982 (1995).
  • [18] Wilderer P.A., R.L. Irvine, M.C. Goronszy: Sequencing batch reactor technology, Sci. Tech. Rep., 10, 34-48 (2001).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0005-0039
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.