PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

5',8-cyklo-2'-deoksyadenozyna. Podwójne uszkodzenie w obrębie pojedynczego nukleozydu/nukleotydu

Autorzy
Identyfikatory
Warianty tytułu
EN
5',8-cyclo-2'-deoxyadenosine. Tandem lesion of single nucleoside/nucleotide
Języki publikacji
PL
Abstrakty
EN
Free radicals can react with different biomolecules present in the cells such as lipids, sugars or nucleic acid peptides. These free radicals initiate reactions with DNA or RNA molecules and then can lead to changes in the genome sequence. These mutations are most probably responsible for a number of different diseases (involving a change in the genome sequence) or, at least, can accompany them. Reactive oxygen species and more specifically - hydroxyl radical can react with DNA molecules and lead to changes in their structures. Formation of radicals at C5' and C8 atoms of 2'-deoxyadenosine leads, through intramolecular cyclisation, to 5',8-cyclo-2'-deoxyadenosine (cdA) derivatives. Frequency of DNA damage occurrence surges with an increase of an ionizing radiation dose. Different repair systems are however present in cellular machinery: BER, which exploits glycosylase and NER - a more complex process involving the removal of damaged oligonucleotides. The later is the basic mechanism for removal the 5',6-cyclo-2'-deoxynucleosides and 5',8-cyclo-2'-deoxynucleosides like cdA. Their defective activity may be responsible for many types of diseases, such as Parkinson, Alzheimer, chronic hepatitis, HCV, atopic dermatitis and different types of cancer. The mechanistic, structural and biochemical studies presented in this work produce quite clear answer as to the approximate range level of the (5'R)-cdA and (5'S)-cdA accumulation in the genome after the lesion period. Using quantum chemistry methods (DFT) paths of the cyclisation reaction have been determined. From the structural analysis point of view, it has been demonstrated that the covalent bond between C(5') and C(8) in nucleoside induces an unusual West conformation of the furanose ring. Based on the NMR data analysis it can be postulated that the rigid and fixed structure of cdA can strongly influence the global geometry of oligonucleosides. Moreover, using the quantum mechanic study of double strand DNA it has been demonstrated that the presence of (5'S)-cdA provokes a "domino effect" extending towards the 5'-end of the strand with this lesion. No domino effect is observed for the 3'-end. The obtained biological results indicate that the presence of (5'S)-cdA in the complementary strand to the strand under repair on the 5'-end side is the critical factor for the inhibition of the BER process of DNA.
Rocznik
Strony
1013--1052
Opis fizyczny
Bibliogr. 131 poz., schem., tab.
Twórcy
  • Zakład Biofarmacji, Katedra Biofarmacji, Wydział Farmaceutyczny Uniwersytetu Medycznego w Łodzi ul. Muszyńskiego 1, 90-151 Łódź, Bolek.Karwowski@wp.pl
Bibliografia
  • [1] B. Halliwell, J.M.C. Gutteridge, Free Radical in Biology and Medicine, 4th ed., Oxford University press, 2007.
  • [2] K.B. Beckman, B.N. Ames, J. Biol. Chem., 1997, 272, 19633.
  • [3] G. Bartosz, Druga Twarz Tlenu, Wydanie pierwsze, Wydawnictwo Naukowe PWN Sp. z o.o. 1995.
  • [4] N.S. Kwon, C.F. Nathan, C. Gilker, O.W. Griffith, D.E. Matthews, D.J. Stuehr, J. Biol. Chem., 1990, 265, 422.
  • [5] (a) A.J. LaVerne, H.R. Schuler, J. Phys. Chem., 1983, 87, 4564, (b) E. Hoglund, E. Blomquist, J. Carlsson, J. Stenerlow, Int. J. Radiat. Biol., 2000, 76, 539.
  • [6] J.D. Rush, B.H.J. Bielski, J. Phys. Chem., 1985, 89, 5062.
  • [7] F. Bosca, M.L. Marin, A. Miranda, Photochem. Photobio., 2001, 74, 637.
  • [8] Handbook of Chemistry and Physic, 75th ed, CRC Press, Boca Raton, FL. 1995.
  • [9] H.J.H. Fenton, J. Chem. Soc., 1894, 65, 899.
  • [10] F. Haber, J. Weiss, Proc. R. Soc. Lond. Ser. A. Biol. Sci., 1934, 147, 332.
  • [11] B.H.J. Bielski, A.O. Allen, J. Phys. Chem., 1977, 81, 1977.
  • [12] T. Rigg, W. Taylor, J. Weiss, J. Chem. Phys., 1954, 22, 575.
  • [13] E. Neyens, J. Baeyens, J. Hazard. Mater., 2003, 98, 33.
  • [14] V.C. Buxton, L.C. Greenstock, J. Phys. Chem., 1988, 17, 513.
  • [15] I. Fridovitch, Arch. Biochem. Biophys., 1986, 247, 1.
  • [16] A. Meister, M.E. Anderson, Annu Rev. Biochem., 1983, 52, 711.
  • [17] R.K. Banerjee, Mol. Cell. Biochem., 1988, 83, 105.
  • [18] A. Deisseroth, A.L. Dounce, Physiol. Rev., 1970, 50, 319.
  • [19] M. Valko, D. Leibfritz, J. Monocol, D.T.M. Cronin, M. Mazur, J. Telser, Int. J. Bichem. Cell Biol., 2007, 39, 44.
  • [20] R. Oliński, A. Siomek, R. Różalski, D. Gackowski, M. Foksiński, J. Guz, T. Dziaman, A. Szpila, B. Tudek, Acta Biochemica Polonica, 2007, 54, 11.
  • [21] B. Halliwell, J.M.C. Gutteridge, Biochem. J., 1984, 219, 1.
  • [22] The hermetic and alchemical writings of Paracelsus, w tłumaczeniu A.E. Waite, BiblioBazazar 2008.
  • [23] B. Halliwell, Biochem. Soc. Trans., 2007, 35, 1147.
  • [24] L. Stryer, Biochemia, Wydawnictwo Naukowe PWN, Warszawa 1999.
  • [25] M. Inoue, E.F. Sato, M. Nishikawa, A.M. Park, Y. Kira, I. Imada, K. Utsumi, Curr. Med. Chem., 2003, 10, 2495.
  • [26] G. Loschen, B. Flohe, FEBS, 1971, 18, 261.
  • [27] M. Gupta, K. Dobashi, E.L. Greene, J.K. Orak, I. Singh, Mol. Cell. Biochem., 1997, 176, 337.
  • [28] J.F. Turrens, A. Boveris, Biochem. J., 1980, 191, 421.
  • [29] J.S. Lipard, M.J. Berg, Podstawy Chemii Bionieorganicznej, tłumaczenie J. Kuryłowicz, wyd. 1, Wydawnictwo Naukowe PWN, 1998.
  • [30] K.M. Eberhardt, Reactive Oxygen Metabolites, 1st ed., CRC Press, Boca Raton, London, New York, Washington D.C. 2001.
  • [31] C.K. Kou, T. Mashino, I. Fidorovitch, J. Biol. Chem., 1987, 262, 4724.
  • [32] T.E. DeCoursey, E. Ligeti, Cell. Mol. Life. Sci., 2005, 62, 2173.
  • [33] T.L. Stayner, D.A. Dankovic, R.A. Lemen, Am. J. Public. Health., 1996, 86, 179.
  • [34] V.K. Kowdley, Gastroenterology, 2004, 127, S79.
  • [35] E. Sokołowska, J. Klimek, Postępy Biologii Komórki, 2007, 34, 15.
  • [36] H. Kozłowski, A.Janicka-Kłos, J. Brasun, E. Gaggelli, Coordination Chemistry Rev., 2009, 253, 2665.
  • [37] U. Bandyopadhyay, D. Das K.R. Banerjee, K.R., Current Science, 1999, 77, 658.
  • [38] E. Antila, T. Westermack, Int. J. Dev. Biol., 1989, 33, 183.
  • [39] G.J. Brewer, D.R. Dick, K.D. Grover,V. LeClarie, M. Tseng, M. Wicha, K. Pienta, G.B. Redman, T. Jahan, K.B. Sondak, M. Strawderman, G. LeCarpantier, S.D. Merajver, Clin, Cancer, Res., 2000, 6, 1.
  • [40] N. Pastor, H. Weinstein, E. Jamison, M. Brenowitz, J. Mol. Biol., 2000, 304, 55.
  • [41] M. Dizdaroglu, P. Jaruga, M. Birincioglu, H. Rodriguez, Free Rad. Biol. Med., 2002, 32, 1102.
  • [42] W. Saenger, Principles of nucleic acid structure, Cantor ChR, 1st eds, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1984.
  • [43] P.V. Chuprina, U. Heinemann, A.A. Nurislamov, P. Zielenkiewicz, R.E. Dickerson, W. Saenger, Proc. Natl. Acad. Sci. USA, 1991, 88, 539.
  • [44] G. Albiser, A. Lamiri, S. Premilat, Int. J. Biol. Macromol., 2001, 28, 199.
  • [45] K.K. Khanna, Y. Shiloh, The DNA damage response: Implication on cancer formation and treatment, Springer Dordrecht Heidelberg, London, New York, 2009.
  • [46] M.D. Evans, S.M. Cook, Oxidative damage to Nucleic Acids, Landes Bioscience and Springer Science+Business Media, LLC, 2007.
  • [47] M. Gulston, J. Fulford, T. Jenner, C. de Lara, P. O'Neill, Nucleic Acids Research, 2002, 30, 3464.
  • [48] H. Terato, H. Ide, Biol. Sci. Space, 2004, 18, 206.
  • [49] T. Nayak, J. Norenerg, T. Anderson, R. Atcher, Canc. Biother. Radiopharm., 2005, 20, 52.
  • [50] J.-P. Pouget, S. Frelon, J.-L. Ravanat, I. Testard, F. Odin, J. Cadet, J. Radiation Res., 2002, 157, 589.
  • [51] (a) J. Sobkowski, Chemia radiacyjna i ochroa radiologiczna, Wydawnictwo Adamantan, 2009; (b) G.V. Buxton, C.L. Greenstock, W.P. Helman, A.B. Ross, J. Phys. Chem. Ref. Data., 1988, 17, 513; (c) K.N. Joshipura, S. Gangopadhyay, C.G. Limbachiya, M. Vinodkumar, J. Phys.: Conf. Ser., 2007, 80, 012008, doi:10.1088/1742-6596/80/1/012008.
  • [52] C.P. Preusch, Medicinal Inorganic Chemistry, ACS Symposium Series, 2005, 903, 15.
  • [53] M.S. Cooke, M.D. Evans, M. Dizdaroglu, J. Lunec, FEBS./, 2003, 17, 1195.
  • [54] J. Cadet, T. Douki, J.-L. Ravanat, Redox-Genom Interaction in Health and Desease, eds. Marcel Dekker, Inc. New York, 2003, 145.
  • [55] H. Kasai, A. Iida, Z. Yamaizumi, S. Nishimura, H. Tanooka, Mutat. Res., 1990, 243, 249.
  • [56] A. Sancar, L.A. Lindsey-Boltz, K. Ünsal-Kaçmaz, S. Linn, Annu. Rev. Biochem. 2004, 73, 39.
  • [57] T. Douki, J. Riviere, J. Cadet, Chem. Res. Toxicol., 2002, 15, 445.
  • [58] R. Beukers, A.M.P. Eker, P.H.M. Lohman, DNA Repair., 2008, 7, 530.
  • [59] T.P. Begly, Acc. Chem. Res., 1994, 27, 394.
  • [60] S. Bellon, D. Gasparutto, Ch. Saint-Pierre, J. Cadet, Org. Biomol. Chem., 2006, 4, 3831.
  • [61] C.H. Box., E.E. Budziński, J.B. Dzwidzik, J.S. Gobey, H.G. Freund, Free Radi. Biol. Med., 1997, 23, 1021.
  • [62] A.F. Evangelista, F.H. Schaefer III, J. Phys. Chem. A., 2004, 108, 10258.
  • [63] P. Fortini, E. Dogliotti, DNA Repair, 2007, 6, 398.
  • [64] A. Romieu, D. Gasparutto, J. Cadet, J. Chem. Soc. Perkin. Trans. 1, 1999, 1257.
  • [65] J.R. Wagner, Ch. Decarroz, M. Berger, J. Cadet, J. Am. Chem. Soc., 1999, 121, 4101.
  • [66] M. Dizdaroglu, P. Jaruga, H. Rodriguez, Free Radical Biol. Med., 2001, 30, 774.
  • [67] M. Dizdaroglu, Biochem. J., 1986, 238, 247.
  • [68] (a) A.W. Johnson, N. Shaw, Proc. Chem. Soc., 1961, 447, (b)D. Dolphin, A.W. Johnson, R. Rodrigo, N. Shawn, Pure Appl. Chem., 1963, 7, 539.
  • [69] P.C. Hogenkamp, J. Biol. Chem., 1963, 238, 477.
  • [70] K. Keck, Z. Naturfirsch. B, 1968, 23, 1034.
  • [71] N. Mariaggi, J. Cadet, R. Teoule, Tetrachedron, 1976, 32, 2385.
  • [72] M.L. Dirksen, W.F. Blakely, E. Holwitt, M. Dizdaroglu, Int. J. Radiat. Biol., 1988, 54, 195.
  • [73] M. Fokiński, R. Kotzbach, W. Szymański, R. Oliński, Free. Radi. Biol. Med., 2000, 29, 597.
  • [74] J. Cadet, T. Douki, D. Gasparutto, J-L. Ravanat, Mutation Res., 2003, 531, 5.
  • [75] J. Cadet, T. Douki, D. Gasparutto, J-L. Ravanat, Radiat. Phys. Chem., 2005, 71, 293.
  • [76] J. Cadet, T. Douki, J-L. Ravanat, Environ. Health. Perspect., 1997, 18, 1833.
  • [77] M.L. Navacchia, A. Manetto, P.C. Montevecchi, Ch. Chatgilialoglu, Eur. J. Org. Chem., 2005, 4640.
  • [78] M. Dizdaroglu, P. Jaruga, H. Rodriguez, Free. Radic. Biol. Med., 2001, 30, 22.
  • [79] K. Randerath, G-D. Zhou, R.L. Somers, J.H. Robbins, P.J. Brooks, J. Biol. Chem., 2001, 38, 36051.
  • [80] P. Jaruga, Y. Xiao, B.C. Nelson, M. Dizdaroglu, Biochem. Biophys. Res. Commun., 2009, 386, 656.
  • [81] D.C. Malins, K.M. Anderson, J.J. Stegeman, P. Jaruga, V.M. Green, N.K. Gilman, M. Dizdaroglu, Health Perspect., 2006, 114, 823.
  • [82] R.A. Egler, E. Fernandes, K. Rothermund, S. Sereika, N. de Soua-Pinto, P. Jaruga, M. Dizdaroglu, E.V. Prochownik, Oncogene, 2005, 24, 8038.
  • [83] G. Kirkali, N. de Soua-Pinto, P. Jaruga, V.A. Bohr, M. Dizdaroglu, DNA Repair, 2009, 8, 274.
  • [84] Kirkali G., de Soua-Pinto N., Genc S., Jaruga P., Dizdaroglu M., Free Radi. Biol. Med., 2008, 44, 386.
  • [85] K.M. Anderson, P. Jaruga, C.R. Ramsey, N.K. Gilman, V.M. Green, S.W. Rostad, J.T. Emerman, M. Dizdaroglu, D.C. Malins, Cell Cycle, 2006, 5, 1240.
  • [86] L.B. Jimenez, S. Encinas, Ch. Chatgilialoglu, M. Miranda, Org. Biomol. Chem., 2008, 6, 1083.
  • [87] S.A. Fleming, J.A. Pincock, Organic Molecular Photochemistry, Vol. 3, ed. V. Ramamurth, K.S.Schanze, M. Deckker, New York 1999.
  • [88] P. Berti, J.A.B. McCann, Chem. Rev., 2006, 106, 506.
  • [89] J.A. Theruvathu, P. Jaruga, M. Dizdaroglu, P.J. Brooks, Mech. Angeing Develop., 2007, 128, 494.
  • [90] T. Lindhal, B.Nyberg, Biochemistry, 1967, 11, 3610.
  • [91] (a) D. Wang, D. Kreutzer, J.M. Essigmann, Mutat. Res., 1998, 400, 99, (b) H.E. Krokan, F. Drabløs, G. Slupphaug, Oncogen, 2002, 21, 8935.
  • [92] R. Rios-Font, L. Rodriguez-Santiago, J. Bertran, M. Sodupe, J. Phys. Chem. B, 2007, 111, 6071.
  • [93] B. Karwowski, Centr. Eur. J. Chem., 2010, 8(1), 134.
  • [94] (a) K. Miaskiewicz, R. Osman, J. Am. Chem. Soc., 1994, 116, 232, (b) D.Sy. Savoye, C. Begusova, M. Michalik, V. Charlier, M.I. Spotheim-Maurizot, Int. J. Radiat. Biol., 1997, 72, 147.
  • [95] A. Adhikary, D. Becker, S. Collins, J. Koppen, M. Sevilla, Nuc. Acid Res., 2006, 34, 1501.
  • [96] Ch. Chatgilaloglu, M. Guerra, Q.G. Mulazzini, J. Am. Chem. Soc., 2003, 125, 3839.
  • [97] N. Pedastur, J. Grodkowski, A.B. Ross, J. Phys. Chem. Ref. Data., 1996, 25, 709.
  • [98] P.J. Brooks, DNA Repair, 2008, 7, 1168.
  • [99] K. Miaskiewicz, H.J. Miller, F.A. Furciarelli, Nucleic Acid Res., 1995, 23, 515.
  • [100] R. Flyunt, R. Bazzanini, Ch. Chatgilialoglu, Q.G. Mulazzani, J. Am. Chem. Soc., 2000, 122, 4225.
  • [101] R. Zhang, L.A. Eriksson, Chem. Phys. Lett., 2006, 417, 303.
  • [102] B. Karwowski, A. Grand, J. Cadet, Acta Biochem. Polon., 2009, 56, (4), 655.
  • [103] B. Karwowski, (5'S) 5,8-cyclo-2-deoksyadenosine, from chemistry to biochemical effects., 2008, Wydawnictwo UM w Łodzi, ISBN 978-83-61058-01-4.
  • [104] B. Karwowski, Centr. Eur. J. Chem., 2008, 6, 450.
  • [105] B. Karwowski, Org. Bio. Chem., 2010, 2010, 8, 1603.
  • [106] C. Altona, M. Sundaralingam, J. Am. Chem. Soc., 1973, 95, 2333.
  • [107] (a) E.J. Klipartic. K.S. Pitzer, R. Spitzer, J. Am. Chem. Soc., 1947, 49, 2483, (b) C. Altona, M. Sundaralingam, J. Am. Chem. Soc., 1972, 15, 8205.
  • [108] A. Romieu, D. Gasparutto, D. Molko, J. Cadet, J. Org. Chem., 1998, 63, 5245.
  • [109] W. Yang, DNA Repair, 2006, 5, 654.
  • [110] B. Karwowski, J. Mol. Struc.: Theochem, 2009, 915, 73.
  • [111] B. Karwowski, Centr. Eur. J. Chem., 2010, 8, 70.
  • [112] N.A. Oyler, L. Adamiwicz, J. Phys. Chem., 1993, 97, 11122.
  • [113] A.N. Richardson, J. Gu, S. Wang, Y. Xie, H.F. Schaefer III, J. Am. Chem. Soc., 2004, 126, 4404.
  • [114] (a) B. Giese, Curr. Opin. Chem. Biol., 2002, 6, 2002; (b) A.K. Ghosh, G.B. Shuster, J. Am. Chem. Soc., 2006, 128, 4172.
  • [115] N. Russo, M. Toscano, A. Grand, J. Comput. Chem., 2000, 21, 1243.
  • [116] C. Dherin, D. Gasparutto, T.R. O'Connor, J. Cadet, S. Bpitex, Int. J. Radiat. Biol., 2004, 80, 21.
  • [117] J.R Wiely, J.M. Robinson, S. Ehdaie, E.C.M. Chen, E.S.D. Chen, W.E. Wentworth, Biochem. Biophys. Res. Comm., 1991, 180, 841.
  • [118] A.N. Rihardson, J. Gu, S. Wang, Y. Xie, H.F. Scheafer III, J. Am. Chem. Soc., 2004, 126, 4404.
  • [119] P. Sarmah, R.C. Deka, Mol. Simulat., 2008, 34, 879.
  • [120] N.A. Oyler, L. Adamowicz, J. Phys. Chem., 1993, 97, 11122.
  • [121] B. Karwowski, Tetrachedron Asymm., 2008, 19, 2390.
  • [122] P. Jaruga, J. Theruvathu, M. Dizdaroglu, P.J. Brooks, Nucl. Acid. Res., 2004, 32, e87.
  • [123] P.-L. Loos, E. Dumont, A.D. Laurent, X. Assfeld, Chem. Phys. Lett., 2009, 475, 120.
  • [124] B.T. Karwowski, J. Gaillard, A. Grand, J. Cadet, Org. Biomol. Chem., 2008, 6, 34.
  • [125] R. Surma, M. Alejska, M. Gawron, Pol. J. Chem., 1994, 68, 2553.
  • [126] D.S. Goodsell, M. Kaczor-Grzeoekowiak, R.E. Dickerson, J. Mol. Biol., 1994, 239, 79.
  • [127] A. Romieu, D. Gasparutto, J. Cadet, Chem. Res. Toxicol., 1999, 5, 412.
  • [128] P.J. Brooks, D.S. Wise, D.A. Berry, J.V. Kosmoski, M.J. Smerdon, K. Coleman, R.E. Tarone, J.H. Robbins, J. Biol. Chem., 2000, 275, 22355.
  • [129] I. Kuraoka, Ch. Bender, A. Romieu, J. Cadet, R.D. Wood, T. Lindahl, Proc. Natl. Acad. Sci. USA,, 2000, 97, 3832.
  • [130] I. Kuraoka, P. Robins, F. Masutani, F. Hanaoka, D. Gasparutto, J. Cadet, R.D. Wood, T. Lindahl, J. Biol. Chem., 2000, 276, 49283.
  • [131] Y. Boulard, 7th Conférence de recherche hivernales, Les Houches, France, 19-24 Mars 2006.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0005-0029
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.