PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wpływ substytucji kationowej na strukturalne i magnetyczne właściwości wybranych chromitów selenowych

Identyfikatory
Warianty tytułu
EN
Influence of cation substitution on structural and magnetic properties of selected chromium selenides
Języki publikacji
PL
Abstrakty
EN
Selenospinels with general formula ACr2Se4 (A = Zn, Cu, Cd) were doped with nickel and tin ions. The chemical synthesis was carried out based on solid phase reactions. To estimate the chemical composition of the mono- and polycrystalline compounds, the following methods were applied: JEOL scanning microscope and ICP-AES (Inductively Coupled Plasma - Atomic Emission Spectrometry). For the obtained polycrystalline compounds, their structural parameters were defined using X-ray diffraction analysis and Rietveld method. Definition of structure of the monocrystals was carried out using KM4 four-circle diffractometer and SHELX software. Magnetic properties were investigated with strong stationary magnetic fields up to 14 T in the temperature range of 4.2-300 K using an induction magnetometer and with stationary magnetic fields up to 0.5 T in the temperature range of 1.8-300 K using a SQUID superconducting magnetometer. In the systems doped with nickel, depending on the reaction stoichiometry, nickel ions were directed to tetrahedral or octahedral positions. When the octahedral positions are fully occupied by chromium ions, small amounts of nickel directed to tetrahedral positions are able to occupy them. The increasing amount of Ni2- ions tends to occupy the octahedral positions in accordance with preference energy, leading to change in structure from cubic to monoclinic one [19, 37, 38]. Nickel ions present in the spinel crystal lattice influence the magnetic properties of these compounds. For ZnCr2-xNixSe4 system, an increase in values of effective magnetic moment and saturation magnetic moment accompanying the increase in nickel ions concentration was ascertained. It was caused by the presence of another magnetic ions in ZnCr2Se4 crystal lattice. The values of paramagnetic Curie-Weiss point and Néel point decrease with the increase in nickel concentration. It is associated with an increase in antiferromagnetic interactions in the system caused by nickel ions [39-41]. Like in the Cd1–xNixCr2Se4system, saturation magnetic moment does not depend on the amount of nickel built-in, and the crystals exhibit strong ferromagnetic interactions. Lack of a change in saturation indicates that nickel is built in with compensated magnetic moment, or in a low-spin state (S = 0). Cadmium and nickel ions occupy tetrahedral positions and chromium ions - octahedral ones [42]. In the systems doped with tin, the reactions carried out in the solid phase were aimed to build in tin ions in tetra-and octahedral positions. X-ray diffraction studies confirmed the presence of tin ions in selected chromites. Mössbauer spectroscopy applied for the complex system Zn1–xSnxCr2Se4 confirmed the presence of tin ions in two inequivalent positions: in tetrahedral and in octahedral environments. Based on theses considerations, the general formula of these compounds may be as follows: ZnxSnδCrySnηSe4, where δ – parameter describing the share of tin ions in tetrahedral sublattice, η – parameter describing the share of tin ions in octahedral sublattice [43]. Although tin ions does not contribute to a magnetic share, their presence in the crystal lattice promotes an increase in antiferromagnetic interactions in the studied compounds. Under the influence of tin ions, conductance changes from p-type (hole conduction) occurring in pure ZnCr2Se4to n-type (electron conduction) [44, 45]. In CuCr2-xSnxSe4 system, magnetic properties change from ferromagnetic for nominal value x = 0.2 to antiferromagnetic for nominal value x = 1.0. These changes are caused by the presence of Sn4+ ions in the system, generating Cr2+ ions. The observed change in structure is caused by Jahn-Teller effect, occurring in the presence of Cu2+ and Cr2+ ions [46].
Rocznik
Strony
859--898
Opis fizyczny
Bibliogr. 52 poz., tab., wykr.
Twórcy
Bibliografia
  • [1] N.N. Greenwood, Ionenkristalle, Gitterdefekte und Nichtstöchiometrische Verbindungen, Verlag Chemie, Weinheim 1973.
  • [2] A. Preisinger, Fortschr. Miner., 1983, 61, 153.
  • [3] H.L. Lehmann, J. Appl. Phys., 1966, 37, 1389.
  • [4] H.L. Lehmann, Physical Review., 1967, 163, 488.
  • [5] T. Rudolf, Ch. Kant, F. Mayr, J. Hemberger, V. Tsurkan, A. Loidl, arXiv:cond-mat/0701080v1.
  • [6] G.A. Sawatzky, F. Van Der Woude, A.H. Morrish, Phys. Rev.,1969, 187, 747.
  • [7] C. Colominas., Phys. Rev., 1967, 153, 558.
  • [8] Y.-I. Jang, F.C. Chou, Y.-M. Chiang, Appl. Phys. Lett., 1999, 74, 2504, doi:10.1063/1.123021.
  • [9] J.L. Soubeyroux, D. Fiorani, E. Agostinelli, S.C. Bhargava, J.L. Dormann, J. Phys. Colloques, 1988, 49, 111. DOI: 10.1051/jphyscol:19888513.
  • [10] R.N. Shelton, D.C. Johnston, H. Adrian, Sol. State Comm., 1976, 20, 1077.
  • [11] S. Kubiak, W. Zarek, Z. Drzazga, J. Kro, A. Chełkowski, Acta Phys. Polonica, 1974, A45, 819.
  • [12] F.K. Lotgering, Sol. State Comm., 1965, 3, 347.
  • [13] I. Jendrzejewska, T. Mydlarz, I. Okoñska-Kozłowska, J. Heimann, J. Magn. Magn. Mater., 1998, 186, 381.
  • [14] H. Duda, E. Macią¿ek, T. Groñ, S. Mazur, A.W. Pacyna, A. Wałkowska, T. Mydlarz, A. Gilewski, Physical Review B, 2008, 77, 035207-1.
  • [15] J. Dziêgielewski, Chemia nieorganiczna,. Czêoeæ 3: Chemia metali grup pobocznych, Katowice, Uniwersytet OEląski, 1986.
  • [16] S.L. Holt, R.J. Bouchard, A. Wold, J. Phys. Chem. Solids, 1966, 27, 755.
  • [17] B.L. Morris, P. Russo, A. Wold, J. Phys. Chem. Solids, 1970, 31, 635.
  • [18] M. Chevreton, A. Sapet, C.R. Acad. Sc. Paris, 1965, 261, 928.
  • [19] A. Weiss, H. Witte, Kristallstrukture und chemische Bindung, Verlag Chemie, Weinheim 1983.
  • [20] R.D. Shannon, Acta Cryst., 1976, A32, 751.
  • [21] P.K. Baltzer, H.W. Lehmann, M. Robbins, Phys. Rev. Lett., 1965, 15, 493.
  • [22] A. Menth, A.R. von Neida, L.K .Schick, D.L. Malm, J. Phys. Chem. Solids, 1972, 32, 1338.
  • [23] Baza PDF2- International Centre for Diffraction Data.
  • [24] G. Bush, B. Magyar, O. Vogt, Solid State Comm., 1969, 7, 509.
  • [25] J. Hemberger, H.-A. Krug von Nidda, V. Tsurkan, A. Loidl, arXiv: cond-mat/0607811, 2006.
  • [26] R. Kleinberger, R. Kouchovsky, C.R. Acad. Sc. Paris, 1966, 262, 628.
  • [27] K. Dwight, N. Menyuk, Phys. Rev., 1967, 163(2), 435.
  • [28] H. Yokoyama, R. Watanabe, A. Chiba, J. Phys. Soc. Japan, 1967, 22, 659.
  • [29] K.P. Belov, Nieorg. Mater., 1972, 8, 2155.
  • [30] I. Okoñska-Kozłowska, J. Kopyczok, H.D. Lutz, Th. Stingl, Acta Cryst., 1993, C49, 1448.
  • [31] P.K. Baltzer, H.W. Lehmann, M. Robbins, Phys. Rev. Lett., 1965, 15, 493.
  • [32] H.W. Lehmann, G. Harbeke, J. Appl. Phys., 1967, 38, 946.
  • [33] H.W. Lehmann, M. Robbins, J. Appl. Phys., 1966, 37, 1389.
  • [34] P.K. Baltzer, P.J. Wojtowicz, M. Robbins, E. Lopatin, Phys.Rev., 1966, 151, 367.
  • [35] W. Piekarczyk, J. Cryst. Growth, 1987, 82, 367.
  • [36] W. Piekarczyk, J. Cryst. Growth, 1988, 89, 267.
  • [37] I. Jendrzejewska, J. All. Comp., 2000, 305, 90.
  • [38] I. Jendrzejewska, A. Waoekowska, T. Mydlarz, J. All. Comp., 2001, 327, 73.
  • [39] I. Jendrzejewska, H. Duda, A. Waśkowska, A. Kita, T. Mydlarz, K. Krajewski, Wpływ jonów niklu na strukturê i właoeciwooeci magnetyczne spinelu ZnCr2Se4, Zjazd Naukowy PTCh i SITPCh, Wrocław 12-17 września 2004, (S-9, W-37).
  • [40] P. Zajdel, informacja własna.
  • [41] P. Zajdel, I. Jendrzejewska, J. Goraus, H. Duda, T. Goryczka, A. Kita, Influence of nickel doping on physical properties of ZnCr2Se4, 10 ISSRNS, Szklarska Porêba 2010, poster.
  • [42] I. Jendrzejewska, M. Żelechower, K. Szamocka, T. Mydlarz, A.Waoekowska, I. Okoñska-Kozłowska, J. Crys. Growth, 2004, 270, 30.
  • [43] I. Jendrzejewska, A. Hanc, P. Zajdel, A. Kita, T. Goryczka, E. Macią¿ek, J. Mrzigod, Acta Physica Polonica A, 2008, 114, 1591.
  • [44] I. Jendrzejewska, J. Mroziński, T. Groń, H. Duda, P. Zajdel, A.W. Pacyna, E. Maciążek, A. Hanc, J. All. Comp., 2009, 480, 63.
  • [45] I. Jendrzejewska, J. Mroziński, P. Zajdel, T. Mydlarz, T. Goryczka, A. Hanc, E. Maciążek, Archive of Metallurgy and Materials, 2009, 54, 499.
  • [46] I. Jendrzejewska, P. Zajdel, J. Mroziński, E. Maciążek, T. Goryczka, A. Hanc, A. Kita, Solid State Phenomena, 2010, 163, 208.
  • [47] I. Jendrzejewska, P. Zajdel, J. Mroziński, E. Maciążek, T. Goryczka, A. Hanc, A. Kita, Solid State Phenomena, 2010, 163, 204.
  • [48] N. Benzakour, M. Hamedoun, M. Houssa, A. Hourmatallah, F. Mahjoubi, M.J. Cond. Mat., 1999, 1, 1.
  • [49] G. Blasse, Philips Res. Rep. Suppl., 1964, 3, 1.
  • [50] A. Miller, J. Applied Phys., 1959, 30, 24S.
  • [51] P. Gibart, M. Robbins, V.G. Lambrecht Jr., J. Phys. Chem. Solids, 1973, 34, 1363.
  • [52] I. Jendrzejewska, T. Goryczka, K. Kaczmarek, E. Macią¿ek, Solid State Phenomena, 2007, 130, 241.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0005-0023
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.