PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wpływ Profesora Stanisława Trybuły na rozwój teorii estymacji sekwencyjnej dla procesów stochastycznych

Identyfikatory
Warianty tytułu
EN
The contributions of Stanisław Trybuła to sequential estimation for stochastic processes
Języki publikacji
PL
Abstrakty
PL
W artykule omówiono wkład Stanisława Trybuły w badania dotyczące sekwencyjnej estymacji dla procesów stochastycznych. Dwa jego artykuły, opublikowane w Dissertationes Mathematicae (1968, 1985), miały istotny wpływ na przyszły rozwój tej dziedziny i zainteresowały wielu statystyków matematyków. W artykule pokrótce omawiamy rezultaty uzyskane przez autorów zainspirowanych tymi dwoma fundamentalnymi pracami Stanisława Trybuły.
EN
This article provides an overview of the theoretical contributions made by Stanisław Trybuła to the field of sequential estimation for stochastic processes. His two papers, published in Dissertationes Mathematicae (1968,1985), have had a substantial impact on the field’s future development and influenced many statisticians. We give a short review of main results of those authors, who had been inspired by the two fundamental works of Stanisław Trybuła.
Rocznik
Tom
Strony
57--65
Opis fizyczny
Bibliogr. 62 poz.
Twórcy
autor
Bibliografia
  • [1] D. S. Bai, Efficient estimation of transition probabilities in a Markov chain, Ann. Statist., 3:1305-1317, 1975.
  • [2] I.V. Basawa and B.L.S. Prakasa Rao, Statistical Inference for Stochastic Processes, Academic Press, London, New York, 1980.
  • [3] C.G.E. Boender and Ryszard Zieliński, A sequential bayesian approach to estimating the dimension of a multinomial distribution. In R. Zieliński, editor, Sequential Methods in Statistics, pages 37-42, Warsaw, 1985. Banach Center Publ., Vol. 16. PWN-Polish Scientific Publishers.
  • [4] M.H. DeGroot, Unbiased sequential estimation for binomial populations, Ann. Math. Statist., 30:80-101, 1959.
  • [5] R. D¨ohler, Dominierberkeit und Suffizienz in der Sequentialanalyse, Math. Operationsforsch. Statist. Ser. Statist., 12:101-134, 1981.
  • [6] A. Dvoretzky, J. Kiefer, and J. Wolfowitz, Sequential decision problems for processes with continuous time parameter. Problems of estimation, Ann. Math. Statist., 24:403-415, 1953.
  • [7] J. Franz, Sequential estimation and asymptotic properties in birth-and-death processes, Math. Operationsforsch. Statist., Ser. Statistics, 13(2):231-244, 1982.
  • [8] J. Franz and R. Magiera, On sequential plans for the exponential class of processes, Applicationes Mathematicae (Warsaw), 16:153-165, 1978.
  • [9] J. Franz and R. Magiera, Admissible estimators in sequential plans for exponential type processes, Scand. J. Statist., 17:275-285, 1990.
  • [10] J. Franz and R. Magiera, Sequential estimation for a family of counting processes in the nuisance parameter case, Statistical Papers, 39:147-162, 1998.
  • [11] J. Franz and R. Magiera, Parameter estimation for switched counting processes, Statistics, 35:371-393, 2001.
  • [12] J.L. Jensen, On asymptotic expansions in non-ergodic models, Scand. J. Statist., 14:305-318, 1987.
  • [13] A. Jokiel-Rokita, Asymptotically pointwise optimal and asymptotically optimal stopping times in the Bayesian inference, Statistical Papers, 49(2):165-175, 2008.
  • [14] A. Jokiel-Rokita, Bayes sequential estimation for a subclass of exponential family of distributions under LINEX loss function, Metrika, http://dx.doi.org/DOI 10.1007/ s00184-010-0298-4, 2010.
  • [15] A. Jokiel-Rokita and R. Magiera, Estimation with delayed observations for the multinomial distribution, Statistics, 32:353-367, 1999.
  • [16] A. Jokiel-Rokita and R. Magiera, Gamma-minimax estimation with delayed observations from the multinomial distribution, Statistics, 38:195-206, 2004.
  • [17] A. Jokiel-Rokita and R. Magiera, Estimation procedures with delayed observations, Journal of Statistical Planning and Inference, 140:992-1002, 2010.
  • [18] U. Küchler and M. Sørensen, Exponential families of stochastic processes: a unifying semimartingale approach, International Statistical Review, 57(2):123-144, 1989.
  • [19] U. Küchler and M. Sørensen, Exponential families of stochastic processes and Lévy processes, Statist. Plann. Inference, 39:211-237, 1994.
  • [20] U. Küchler and M. Sørensen, Exponential Families of Stochastic Processes, Spinger Series in Statistics, Springer, New York, 1997.
  • [21] Yu.V. Linnik and I.V. Romanovsky, Some new results in sequential estimation theory, In: Proccedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability. Volume I. Theory of Statistics, pages 85-96. University of California Press, 1972.
  • [22] R. Magiera, On the inequality of Cramér-Rao type in sequential estimation theory, Applicationes Mathematicae (Warsaw), 14:227-235, 1974.
  • [23] R. Magiera, On sequential minimax estimation for the exponential class of processes, Applicationes Mathematicae (Warsaw), 15:445-454, 1977.
  • [24] R. Magiera, Sequential estimation for the spectral density parameter of a stationary Gaussian process, Probab. Math. Statist., 4:33-45, 1984.
  • [25] R. Magiera, Sequential estimation of the transition intensities in Markov processes with migration, Applicationes Mathematicae (Warsaw), 18:241-250, 1984.
  • [26] R. Magiera, Admissible sequential polynomial estimators for stochastic processes, Sequential Analysis, 6(3):207-218, 1987.
  • [27] R. Magiera, Admissibility of polynomial estimators in sequential estimation for exponential-type processes, Sankhy-a, Ser. A, 52:178-191, 1990.
  • [28] R. Magiera, Admissible sequential estimators of ratios between two linear combinations of parameters of exponential-type processes, Statistics and Decisions, 9:107-118, 1991.
  • [29] R. Magiera, Conjugate priors for exponential-type processes with random initial conditions, Applicationes Mathematicae (Warsaw), 22(3):321-330, 1994.
  • [30] R. Magiera, On a class of sequential estimation problems for one-parameter exponential families, SankhyŻa, 58, Series A, Pt.1:160-170, 1996.
  • [31] R. Magiera, On minimax sequential procedures for exponential families of stochastic processes, Applicationes Mathematicae (Warsaw), 25(1):1-18, 1998.
  • [32] R. Magiera, Optimal Sequential Estimation for Markov-Additive Processes, In: W. Kahle, E. von Collani, J. Franz, and U. Jensen, editors, Advances in Stochastic Models for Reliability, Quality and Safety, chapter 12, pages 167-181. Birkhäuser Verlag, Boston, 1998.
  • [33] R. Magiera, Minimax sequential procedures for Markov-additive processes, Stochastic Models, 15(5):671-888, 1999.
  • [34] R. Magiera, Γ-minimax sequential estimation for Markov-additive processes, Applicationes Mathematicae (Warsaw), 28(4):467-485, 2001.
  • [35] R. Magiera and V. T. Stefanov, Sequential estimation in exponential-type processes under random initial conditions, Sequential Analysis, 8(2):147-167, 1989.
  • [36] R. Magiera and S. Trybuła, Plany ukośne dla procesu dwumianowego, Mat. Stos., 6:41-47, 1976.
  • [37] R. Magiera and M. Wilczyński, Conjugate priors for exponential-type processes, Statist. Probab. Lett., 12:379-384, 1991.
  • [38] R. Magiera and M. Wilczyński, Natural and modified conjugate priors in exponential families of stochastic processes, Probability and Mathematical Statistics, 21(2):303-319, 2001.
  • [39] M. Musiela, Sequential estimation of parameters of a stochastic differential equation, Math. Operationsforsch. Statist., Ser. Statistics, 8(4):483-498, 1977.
  • [40] M. Musiela, On sequential estimation of parameters of continuous Gaussian Markov processes, Probability and Mathematical Statistics, 2(1):37-53, 1981.
  • [41] A.A. Novikov, Sequential estimation of the parameters of diffusion-type processes, Math. Notes, 12:812-818, 1972.
  • [42] L. Partzsch, On calculating the Laplace transform of a special quadratic functional of the Ornstein-Uhlenbeck velocity process, In: R. Zieliński, editor, Sequential Methods in Statistics, pages 437-441, Warsaw, 1985. Banach Center Publ., Vol. 16. PWN Polish Scientific Publishers.
  • [43] R. Różański, A modification of Sudakov's lemma and efficient sequential plans for the Ornstein-Uhlenbeck process, Appl. Math. (Warsaw), 17(1):73-86, 1980.
  • [44] R. Różański, Sequential estimation in random fields, Probability and Mathematical Statistics, 9(1):77-93, 1988.
  • [45] R. Różański, Minimax sequential estimation of parameters of random fields, Appl. Math. (Warsaw), 20(4):565-572, 1990.
  • [46] R. Różański, Minimax sequential estimation based on random fields, Probability and Mathematical Statistics, 12(1):35-42, 1991.
  • [47] R. Różański, Random stopping sets in sequential analysis of random measures and fields, Journal of Statistical Planning and Inference, 30:401-412, 1992.
  • [48] M. Sørensen, On sequential maximum likelihood estimation for exponential families of stochastic processes, Internat. Statist. Rev., 54:191-210, 1986.
  • [49] V.T. Stefanov, Efficient sequential estimation in exponential-type processes, Ann. Statist., 14:1606-1611, 1986.
  • [50] V.T. Stefanov, Explicit limit results for minimal sufficient statistics and maximum likelihood estimators in some Markov processes: exponential families approach, Ann. Statist., 23(4):1073-1101, 1995.
  • [51] V.N. Sudakov, On measures defined by Markovian moments, In: Investigations on the Theory of Random Processes, V. 12, pages 157-164 (in Russian). Memoirs of the Scientific Seminars of the Leningrad Section of the Steklov Math. Inst., 1969.
  • [52] S. Trybuła, Sequential estimation in processses with independent increments, Dissertationes Mathematicae, 60:1-46, 1968.
  • [53] S. Trybuła, Sequential estimation for finite state Markov processes, Appl. Math. (Warsaw), 17:227-248, 1982.
  • [54] S. Trybuła, Some investigations in minimax estimation theory, Dissertationes Mathematicae, 240:1-42, 1985.
  • [55] M. Wilczyński, Minimax sequential estimation for the multinomial and gamma processes, Appl. Math. (Warsaw), 18(4):577-595, 1985.
  • [56] W. Winkler, Sequential estimation in processes with independent increments, In: Mathematical Statistics, pages 325-331, Warsaw, 1980, Banach Center Publ., Vol. 6. PWN.
  • [57] W. Winkler and J. Franz, Sequential estimation problems for the exponential class of processes with independent increments, Scand. J. Statist., 6:129-139, 1979.
  • [58] W. Winkler, J. Franz, and I. Küchler, Sequential statistical procedures for processes of the exponential class with independent increments, Math. Operationsforsch. Statist., Ser. Statistics, 13(1):105-119, 1982.
  • [59] J. Wolfowitz, The efficiency of sequential estimates and wald's equation for sequential processes, Annals of Mathematical Statistics, 18(2):215-230, 1947.
  • [60] R.A. Zaidman, Yu.V. Linnik, and V.N. Sudakov, On sequential estimation and Markov stopping times for processes with independent increments, USSR-Japan Symposium on Probability. Habarovsk. August 1969. Novosibirsk. Nauka., pages 127-143, 1969. In Russian.
  • [61] R. Zieliński (ed.), Sequential methods in statistics, volume 16. Banach Center Publications, PWN, 1985.
  • [62] R. Zieliński, A class of stopping rules for fixed precision sequential estimates, Zastosow. Mat., 17:277-281, 1982.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0005-0008
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.