PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Normalized-scale Relations and Their Concept Lattices in Relational Databases

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Formal Concept Analysis (FCA) is a valid tool for data mining and knowledge discovery, which identifies conceptual structures from (formal) contexts. As many practical applications involve non-binary data, non-binary attributes are introduced via a many-valued context in FCA. In FCA, conceptual scaling provides a complete framework for transforming any many-valued context into a context, in which each non-binary attribute is given a scale, and the scale is a context. Each relation in relational databases is a many-valued context of FCA. In this paper, we provide an approach toward normalizing scales, i.e., each scale can be represented by a nominal scale and/or a set of statements. One advantage of normalizing scales is to avoid generating huge (binary) derived relations. By the normalization, the concept lattice of a derived relation is reduced to a combination of the concept lattice of a derived nominal relation and a set of statements. Hence, without transforming a relation into a derived relation, one can not only determine concepts of the derived relation from concepts of given scales, but also determine concepts of the derived relation from concepts of a derived nominal relation and a set of statements. The connection between the concept lattice of a derived nominal relation and the concept lattice of a derived relation is also considered.
Wydawca
Rocznik
Strony
393--409
Opis fizyczny
Bibliogr. 25 poz., tab.
Twórcy
autor
autor
autor
  • Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190, P.R.China, leiyuxia@ict.ac.cn
Bibliografia
  • [1] Carpineto, C, Romano, G.: Using Concept Lattices for Text Retrieval and Mining. Proc. of Formal Concept Analysis (B. Ganter, et al., Eds.), LNAI 3626, Springer-Verlag, 2005, 161-179.
  • [2] Chen, Y. H., Yao, Y. Y: A multiview approach for intelligent data analysis based on data operators. Information Sciences, 178,2008, 1-20.
  • [3] Cimiano, P., Hotho, A., Staab, S.: Learning concept hierarchies from text corpora using formal concept analysis. Journal of Articial Intelligence Research, Vol.24, 2005, 305-339.
  • [4] Cimiano, P., Hotho, A., Stumme, G., et al.: Conceptual Knowledge Processing with Formal Concept Analysis and Ontologies. Proc. ofICFCA 2004 (P. Eklund, Eds.), LNAI 2961, Springer-Verlag, Berlin, 2004, 189-207.
  • [5] Codd,E.E: A relational model of data for large shared databases. Communications ofthe ACM, Vol.13, 1970, 377-387.
  • [6] Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer-Verlag, Berlin, 1999
  • [7] Gugisch, R.: Many-Valued Context Analysis Using Descriptions. Proc. of ICCS 2001 (H. Delugach, G. Stumme, Eds.), LNA12120, Springer-Verlag, 2001,157-168.
  • [8] Huchard, M., Rouane Hacene, M., Roume, C, Valtchev, P.: Relational concept discovery in structured datasets. Ann Math Artiflntell, Vol.49,2007, 39-76.
  • [9] Jay, N., Kohler, R, Napoli, A.: Using formal concept analysis for mining and interpreting patient flows within a healthcare network. Proc. of CIA 2006 (S. Ben Yahia, et al., Eds.), LNA1 4923, Springer-Verlag, Berlin, 2008, 263-268.
  • [10] Jiang, R, Sui, Y. E, Cao, C. G.: Formal Concept Analysis in Relational Database and Rough Relational Database. Fundamenta Informaticae, 80(4), 2007,435-451.
  • [11] Jiang, E, Sui, Y. E, Cao, C. G.: Rough Contexts and Rough-Valued Contexts. Proc. Of RSKT 2006 (G. Wang et al., Eds.) LNAI 4062, Springer-Verlag, 2006, 176-183.
  • [12] Jiang, L. Y., Deogun, J.: SPICE: A New Framework for Data Mining based on Probability Logic and Formal Concept Analysis. Fundamenta Informaticae, 78(4), 2007,467-485.
  • [13] Moha, N., Amine Mohamed Rouane Hacene, Valtchev, P., et al.: Refactorings of Design Defects Using Relational Concept Analysis. Proc. of ICFCA 2008 (R. Meaina, S. Obiedkov, Eds.), LNAI 4933, Springer-Verlag, Berlin, 2008, 289-304.
  • [14] Nafkha, I., Elloumi, S., Jaoua, A.: Using Concept Formal Analysis for Cooperative Information Retrieval. Proc. of CŁA 2004 (V. Snasel, R. Belohlavek, Eds.), 2004, 120-136.
  • [15] Prediger, S.: Logical scaling in Formal Concept Analysis. Proc. of Conceptual structures: fulfilling Peirce's dream (D. Lukose, H. Delugach, M. Keeler, et al, Eds.), LNAI 1257, Springer-Verlag, 1997, 332-341.
  • [16] Prediger, S., Stumme, G.: Theory-driven Logical Scaling: Conceptual Information Systems meet Description Logics, http://citeseer.ist.psu.edu/246950.html.
  • [17] Prediger, S., Wille, R.: The Lattice of Concept Graphs of a Relationally Scaled Context. Proc. of ICCS 1999 (William M. Tepfenhart, Walling R. Cyre, Eds.), LNCS1640, Springer-Verlag, 1999,401-414.
  • [18] Qu, K. S., Zhai, Y. H., Liang, J. Y, Li, D. Y.: Representation and Extension of Rough Set Theory Based on Formal Concept Analysis. Journal of Software, 18(9), 2007, 2174-2182.(in Chinses with English abstract)
  • [19] Sandborg-Petersen, U.: An FCA Classification of Durations of Time for Textual Databases. Supplementary Proceedings of ICCS 2008 (Peter W. Eklund, Ollivier Haemmerl, Eds.), 2008,91-98.
  • [20] Stumme, G., Taouil, R., Bastide, Y, et al.: Intelligent Structuring and Reducing of Association Rules with Formal Concept Analysis. Proc. of KI 2001 (F. Baader, G. Brewka, T. Eiter, Eds.), LNAI 2174, Springer-Verlag, Berlin, 2001, 335-350.
  • [21] Tang, J., DU, Y. J., Qi, L.: Research on Concept Lattices Based Peasonalized Information Retrieval. Proc. of the Sixth International Conference on Machine Learning and Cybernetics, 2007, 4032-4037.
  • [22] Tilley, T., Cole, R., Becker, P., et al.: A Survey of Formal Concept Analysis Support for Software Engineering Activities. Proc. of Formal Concept Analysis (B. Ganter, et al., Eds.), LNAI 3626, Springer-Verlag, Berlin, 2005,250-271.
  • [23] Valtchev, P., Rouane Hacene, M., Huchard, M., Roume, C: Extracting formal concepts out of relational data. Proc. of JIM 2003 (E. SanJuan, A. Berry, et al., Eds.), 2003, 37-49.
  • [24] Wille, R.: Why can concept lattices support knowledge discovery in databases? Journal of Experimental and Theoretical Artificial Intelligence, Vol.14, 2002, 81-92.
  • [25] Yao, Y. Y.: A Comparative Study of Formal Concept Analysis and Rough Set Theory in Data Analysis. Proc. ofRSCTC 2004 (S. Tsumoto, et al., Eds.), LNAI 3066, Springer-Verlag, 2004, 59-68.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0004-0107
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.