Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The study of ant colonies behavior and their self-organizing capabilities is of interest to machine learning community, because it provides models of distributed adaptive organization which are useful to solve difficult optimization and classification problems among others. Social insects like ants, bees deposit pheromone (a type of chemical) in order to communicate between the members of their community. Pheromone, that causes clumping behavior in a species and brings individuals into a closer proximity, is called aggregation pheromone. This article presents a new algorithm (called, APC) for pattern classification based on this property of aggregation pheromone found in natural behavior of real ants. Here each data pattern is considered as an ant, and the training patterns (ants) form several groups or colonies depending on the number of classes present in the data set. A new test pattern (ant) will move along the direction where average aggregation pheromone density (at the location of the new ant) formed due to each colony of ants is higher and hence eventually it will join that colony. Thus each individual test pattern (ant) will finally join a particular colony. The proposed algorithm is evaluated with a number of benchmark data sets as well as various kinds of artificially generated data sets using three evaluationmeasures. Results are compared with four other well known conventional classification techniques. Experimental results show the potentiality of the proposed algorithm in terms of all the evaluation measures compared to other algorithms.
Wydawca
Czasopismo
Rocznik
Tom
Strony
345--362
Opis fizyczny
Bibliogr. 38 poz., tab., wykr.
Twórcy
autor
autor
autor
- Center for Soft Computing Research, Indian Statistical Institute, Kolkata 700108, India, anindya t@isical.ac.in
Bibliografia
- [1] W. J. Bell. Chemo-orientation in walking insects. In W. J. Bell and R. T. Carde, editors, Chemical Ecology of Insects, pages 93-109, 1984.
- [2] L. Chen, X. H. Xu, and Y. X. Chen. An adaptive ant colony clustering algorithm. In Proceedings of the 3rd Intrenational Conference on Machine Learning and Cybernetics, pages 1387-1392, Shanghai, 2004.
- [3] T. M. Cover and P. E. Hart. Nearest neighbor pattern classification. IEEE Transactions on Information Theory, IT-13(1):21-27, 1967.
- [4] M. Dorigo and L. M. Gambardella. Ant colony system: A cooperative learning approach to the traveling salesman problem. IEEE Transactions on Evolutionary Computing, 1(1):53-66, 1997.
- [5] M. Dorigo, V. Maniezzo, and A. Colorni. The ant system: Optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics - part B, 26(1):29-41, 1996.
- [6] M. Dorigo and T. Stützle. Ant Colony Optimization. Prentice Hall of India Private Limited, New Delhi, 2005.
- [7] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. Wiley, New York, 2000.
- [8] A. P. Englebrecht. Computational Intelligence: An Introduction. JohnWiley and Sons, 2002.
- [9] A. Ghosh, A. Halder, M. Kothari, and S. Ghosh. Aggregation pheromone density based data clustering. Information Sciences, 178(13):2816-2831, 2008.
- [10] A. Ghosh, M. Kothari, A. Halder, and S. Ghosh. Use of aggregation pheromone density for image segmentation. Pattern Recognition Letters, 2009. To appear.
- [11] S. Ghosh, M. Kothari, and A. Ghosh. Aggregation pheromone density based image segmentation. In P. Kalra and S. Peleg, editors, Proceedings of the 5th Indian Conference on Computer Vision, Graphics and Image Processing, pages 118-127, LNCS 4338. Springer-Verlag Berlin, Heidelberg, 2006.
- [12] D. J. Hand and S. D. Jacka. Discrimination and Classification. Wiley, New York, 1981.
- [13] J. Handl and B. Meyer. Ant-based and swarm-based clustering. Swarm Intelligence, 1:95-113, 2007.
- [14] A. K. Jain, R. P.W. Duin, and J.Mao. Statistical pattern recognition: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(1):4-37, 2000.
- [15] J. Kennedy and R. C. Eberhart. Swarm Intelligence. Morgan Kaufman Publishers, 2001.
- [16] M. Kothari, S. Ghosh, and A. Ghosh. Aggregation pheromone density based clustering. In S. P. Mohanty and A. Sahoo, editors, Proceedings of the 9th International Conference on Information Technology., pages 259-264. IEEE Computer Society Press, Los Alamitos, California, 2006.
- [17] M. Kothari, S. Ghosh, and A. Ghosh. Aggregation pheromone density based change detection in remotely sensed images. In P. Pal, editor, Proceedings of 6th International Conference on Advances in Pattern Recognition, pages 193-197, Singapore, 2007.World Scientific Publishing Co. Pvt. Ltd.
- [18] S. R. Kulkarni, G. Lugosi, and S. S. Venkatesh. Learning pattern classification: A survey. IEEE Transactions on Information Theory, 44(6):2178-2206, 1998.
- [19] L. I. Kuncheva. Fuzzy Classifier Design. Springer-Verlag, Heidelberg, 2000.
- [20] B. Liu, H. A. Abbass, and B. McKay. Density-based heuristic for rule discovery with ant-miner. In Proceedings of 6th Australasia-Japan Joint Workshop on Intelligence Evololution System, pages 180-184, Canberra, Australia, 2002.
- [21] B. Liu, H. A. Abbass, and B. McKay. Classification rule discovery with ant colony optimization. In Proceedings of IEEE/WIC International Conference Intellelligent Agent Technology, pages 83-88, 2003.
- [22] D. Martens, M. D. Backer, R. Haesen, J. Vanthienen, M. Snoeck, and B. Baesens. Data mining with an ant colony optimization algorithm. IEEE Transactions on Evolutionary Computing, 11(5):651-665, 2007.
- [23] D. J. Newman, S. Hettich, C. L. Blake, and C. J. Merz. UCI repository of machine learning databases. University of California, Irvine, Department of Information and Computer Sciences, 1998. http://www.ics.uci.edu/_mlearn/MLRepository.html.
- [24] M. Ono, T. Igarashi, E. Ohno, and M. Sasaki. Unusual thermal defence by a honeybee against mass attack by hornets. Nature, 377(6547):334-336, 1995.
- [25] S. K. Pal and D. Dutta Majumder. Fuzzy sets and decision making approaches in vowel and speaker recognition. IEEE Transactions on Systems, Man, and Cybernetics, 7:625-629, 1977.
- [26] S. K. Pal and S.Mitra. Fuzzy versions of Kohonen's net andmlp-based classification: Performance evaluation for certain nonconvex decision regions. Information Sciences, 76:297-337, 1994.
- [27] R. S. Parpinelli, H. S. Lopes, and A. A. Freitas. Data mining with an ant colony optimization algorithm. IEEE Transactions on Evolutionary Computing, 6(4):321-332, 2002.
- [28] J. Platt. Using sparseness and analytic QP to speed training of support vector machines. In M. S. Kearns, S. A. Solla, and D. A. Cohn, editors, Advances in neural information processing systems. MIT Press, 1999.
- [29] B. D. Ripley and N. L. Hjort. Pattern Recognition and Neural Networks. Cambridge University Press, New York, NY, USA, 1995.
- [30] S. R. Safavian and D. Landgrebe. A survey of decision tree classifier methodology. IEEE Transactions on Systems, Man, and Cybernetics, 21(3):660-674, 1991.
- [31] G. Salton and M. J. McGill. An Introduction to Modern Information Retrieval. McGrawHill, 1983.
- [32] B. Sch¨olkopf and A. J. Smola. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT press, 2002.
- [33] K. Socha and M. Dorigo. Ant colony optimization for continuous domains. European Journal of Operational Research.
- [34] M. Sukama and H. Fukami. Aggregation arrestant pheromone of the German cockroach, Blattella germanica (L.) (Dictyoptera: Blattellidae): isolation and structure elucidation of blasttellastanoside-A and B. Journal of Chemical Ecology, 19:2521-2541, 1993.
- [35] S. Tsutsui. Ant colony optimization for continuous domains with aggregation pheromones metaphor. In Proceedings of the 5th International Conference on Recent Advances in Soft Computing, pages 207-212, United Kingdom, December 2004.
- [36] S. Tsutsui and A. Ghosh. An extension of ant colony optimization for function optimization. In Proceedings of the 5th Asia Pacific Conference on Simulated Evolution and Learning, Pusan, Korea, 2004.
- [37] X. N. Wang, Y. J. Feng, and Z. R. Feng. Ant colony optimization for image segmentation. In Proceedings of the 4th International Conference on Machine Learning and Cybernetics, pages 5355-5360, 2005.
- [38] Weka Machine Learning Project. Weka. URL http://www.cs.waikato.ac.nz/˜ml/weka.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0004-0076