PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Behaviour Preservation of a Biological Regulatory Network when Embedded into a Larger Network

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main contribution of this work is a mathematical theorem which establishes a necessary and sufficient condition to preserve the behaviour of a genetic regulatory network when it is embedded into a larger network. We adopt the modelling approach of Ren´e Thomas, which provides a discrete representation of biological regulatory networks. This framework is entirely formalized using labelled graphs with semantics defined in terms of state graphs with transitions. Our theorem offers the possibility to automatically verify whether a subnetwork has autonomous behaviour. It will allow biologists to better identify relevant sets of genes which should be studied together.
Słowa kluczowe
Wydawca
Rocznik
Strony
463--485
Opis fizyczny
Bibliogr.44 poz., tab., wykr.
Twórcy
autor
autor
  • Laboratoire I3S, UMR 6070 UNSA-CNRS Algorithmes-Euclide-B, 2000, route des Lucioles B.P. 121 F-06903 Sophia Antipolis CEDEX, France bernot@unice.fr
Bibliografia
  • [1] Altinok, A., Lvi, F., Goldbeter, A.: A cell cycle automaton model for probing circadian patterns of anticancer drug delivery, Adv Drug Deliv Rev., 138, 2007, 277-288.
  • [2] Aracena, J., Demongeot, J., Goles, E.: Fixed points and maximal independent sets in AND-OR networks, Discrete Applied Mathematics, 138, 2004, 277-288.
  • [3] Bassano, V., Bernot, G.: Marked Regulatory Graphs: A formal framework to simulate Biological Regulatory Networks with simple automata, Proc. of the 14th IEEE International Workshop on Rapid System Prototyping, USA, 2003.
  • [4] Bernot, G., Comet, J., Richard, A., Guespin, J.: A Fruitful Application of Formal Methods to Biological Regulatory Networks: Extending Thomas' Asynchronous Logical Approach with Temporal Logic, Journal of Theoretical Biology, 229(3), 2004, 339-347.
  • [5] Chaouiya, C.: Petri net modelling of biological networks, Briefings in Bioinformatics, 8, 2007, 210-219.
  • [6] Chen, C., Csikasz-Nagy, A., Gyorffy, B., Val, J., Novak, B., Tyson, J.: Kinetic analysis of a molecular model of the budding yeast cell cycle, Molecular Biology of the Cell, 11, 2000.
  • [7] Correale, L., Leone, M., Pagnani, A., Weigt, M., Zecchina, R.: Core percolation and onset of complexity in boolean networks, Phys Rev Lett., 96(1), 2006.
  • [8] De Jong, H.: Modeling and Simulation of Genetic Regulatory Systems: A Literature Review, Journal of Computational Biology, 9(1), 2002, 67-103.
  • [9] De Jong, H., Geiselmann, J., Hernandez, C., Page, M.: Genetic network analyzer: qualitative simulation of genetic regulatory networks, Bioinformatics, 2003, 336-44.
  • [10] De Jong, H., Page,M., Hernandez, C., Geiselmann, J.: Qualitative simulation of genetic regulatory networks: Method and application, In Proc. of the 17th Inter Joint Conf on Artificial Intelligence, USA, 2001.
  • [11] De Jong, H., Tombor, B., Albert, R., Oltvai, Z. N., Barabsi, A.-L.: The large-scale organization of metabolic networks, Nature, 407, 2000, 651-654.
  • [12] Demongeot, J., Aracena, J., Thuderoz, F., Baum, T.-P., Cohen, O.: Genetic regulation networks: circuits, regulons and attractors, C.R. Biologies, 326, 2003, 171-188.
  • [13] Demongeot, J., Kaufman, M., Thomas, R.: Positive feedback circuits and memory, C R Acad Sci III, 2000, 69-79.
  • [14] Gilbert, D., Heiner, M., Lehrack, S.: A Unifying Framework for Modelling and Analysing Biochemical Pathways Using Petri Nets, CMSB 2007 (Computational Methods in Systems Biology), Springer-Verlag in LNCS/LNBI, 4695, 2007.
  • [15] Gouzé, J.: Positive and negative circuits in dynamical systems, Journal of Biological Systems, 6, 1998, 11-15.
  • [16] Guelzim, N., Bottani, S.and Bourgine, P., Kps, F.: Topological and causal structure of the yeast transcriptional regulatory network, Nature Genetics, 31, 2002, 60-63.
  • [17] Guespin, J., Bernot, G. Comet, J.-P., Mrieau, A., Richard, A., Hulen, C., Polack, B.: Epigenesis and dynamic similarity in two regulatory networks in Pseudomonas aeruginosa, Acta Biotheoretica, 52(4), 2004, 379-390.
  • [18] Guespin-Michel, J., Kaufman, M.: Positive feedback circuits and adaptive regulations in bacteria, Acta Biotheoretica, 49(4), 2001, 207-218.
  • [19] Kaufman, M., Soul, C., Thomas, R.: A new necessary condition on interaction graphs for multistationarity, J Theor Biol., 4(248), 2007, 675-85.
  • [20] Louis, M., Holm, L., Sanchez, L., Kaufman, M.: A Theoretical Model for the Regulation of Sex-lethal, a Gene That Controls Sex Determination and Dosage Compensation in Drosophila melanogaster, Genetics, 165, 2003, 1355-1384.
  • [21] Maslov, S., Sneppen, K.: Specificity and stability in topology of protein networks, Science, 296, 2002, 910-913.
  • [22] Mendoza, L., Thieffry, D., Alvarez-Buylla, E.: Genetic control of flower morphogenesis in Arabidopsis thaliana: a logical analysis, Bioinformatics, 1999, 593-606.
  • [23] Mutaille, L., Thieffry, D., Leo, O., Kaufman, M.: Toxicity and Neuroendocrine Regulation of the Immune Response: A model Analysis, Journal of Theoretical Biology, 1996, 285-305.
  • [24] Pérès, S., Comet, J.-P.: Contribution of Computational Tree Logic to biological regulatory network: example from Pseudomonas Aeruginosa, In Internat. workshop on Comput. Methods in System Biology, 2003.
  • [25] Plathe, E., Mestl, T., Omholt, S.: Feedback loops, stability and multistationarity in dynamical systems, Journal of Biological Systems, 3, 1995, 569-577.
  • [26] Remy, E., Moss, B., Chaouiya, C., Thieffry, D.: A description of dynamical graphs associated to elementary regulatory circuits, Bioinformatics, 19(2), 2003, 172-178.
  • [27] Remy, E., Ruet, P., Thieffry, D.: Graphic requirements for multistability and attractive cycles in a Boolean dynamical framework, Prpublication IML, 2005.
  • [28] Sanchez, L., Van Helden, J., Thieffry, D.: Establishement of the dorso-ventral pattern during embryonic development of drosophila melanogasater: a logical analysis, Journal of Theoretical Biology, 189(4), 1997, 377-389.
  • [29] Snchez, L., Thieffry, D.: A logical analysis of the gap gene system, Journal of theoretical Biology, 211, 2001, 115-141.
  • [30] Snchez, L., Thieffry, D.: Segmenting the fly embryo: a logical analysis of the pair-rule cross-regulatory module, Journal of theoretical Biology, 224, 2003, 517-537.
  • [31] Snoussi, E.: Qualitative dynamics of piecewise-linear differential equation: a discrete mapping approach, J. Math. Biology, 1989, 189-207.
  • [32] Snoussi, E., Thomas, R.: Logical identification of all steady states: the concept of feedback loop characteristic states, B. of mathematical biology, 1993, 973-991.
  • [33] Soulé, C.: Graphical requirements for multistationarity, ComPlexUs, 1, 2003, 123-133.
  • [34] Thieffry, D., Romere, D.: The modularity of biological regulatory networks, Biosystems, 1998, 49-59.
  • [35] Thieffry, D., Snoussi, E., Richelle, J., Thomas, R.: Positive loops and differentiation, J. Biol. Systems, 1995.
  • [36] Thieffry, D., Thomas, R.: Qualitative analysis of gene networks, In Pac Symp Biocomput, 1998.
  • [37] Thomas, R.: Regulatory networks seen as asynchronous automata: A logical description, J. theoretical Biology, 1991, 1-23.
  • [38] Thomas, R., d'Ari, R.: Biological Feedback, CRC Press, 1990.
  • [39] Thomas, R., Kaufman,M.: Multistationarity, the basis of cell differentiation and memory. II. Logical analysis of regulatory networks in terms of feedback circuits, Chaos, 11, 2001, 180-195.
  • [40] Thomas, R., Thieffry, D.: Dynamical behavior of biological regulatory networks-II. Immunity control in bacteriophage lambda, B. of mathematical biology, 1995, 277-297.
  • [41] Thomas, R., Thieffry, D., Kaufman, M.: Dynamical of biological regulatory networks-I. Biological role of feedback loops and practical use of the concept of the loop-characteristic state, B. of mathematical biology, 1995, 247-275.
  • [42] Troncale, S., Tahi, F., Campard, D., Vannier, J., Guespin, J.: Modeling and simulation with Hybrid Functional Petri Nets of the role of Interleukin-6 in human early haematopoiesis, In Proc. of Pacific Symposium on Biocomputing (PSB), 2006.
  • [43] Tyson, J., Chen, C., Novak, B.: Network Dynamics and Cell Physiology, Nature Reviews Molecular Cell Biology, 2, 2001, 908-916.
  • [44] Tyson, J., Novk, B.: Regulation of the Eukaryotic Cell Cycle: Molecular Antagonism, Hysteresis, and Irreversible Transitions, J. Theore. Biol, 249, 2001, 249-263.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0004-0050
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.