PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A Comparison of Metric-Based and Empirical Approaches for Cognitive Analysis of Modeling Languages

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Modeling languages are needed to describe the conceptual construct underlying software. Several modeling languages have been proposed during the last decades. Cognitive complexity is one of the common problems in designing modeling languages. Users have to split their attention and cognitive resources between two different tasks when working with complex language: solving the problem and understanding the elements composing the language. Several researches have been accomplished to evaluate cognitive complexity of modeling languages, among them, metric based and empirical approaches aremore important and convenient than others. In this paper, we compared these two methods. Results show that there is no significant relation between outputs generated by these approaches.
Wydawca
Rocznik
Strony
337--352
Opis fizyczny
bibliogr. 44 poz., tab., wykr.
Twórcy
autor
autor
Bibliografia
  • [1] Aggrawal, K. K., Singh, Y., Chandra, P., and Puri, M.: Measurement of software maintainability using a fuzzy model, Journal of Computer Sciences, 1 (4), 2005, 538-542.
  • [2] Barbier, F. and Henderson-Sellers, B.: Object modeling languages: An evaluation and some key expectations for the future, Annals of Software Engineering, 10, 2000, 67-101.
  • [3] Briand, L., Wst, J., and Lounis, H.: A Comprehensive Investigation of Quality Factors in Object-Oriented Designs: An Industrial Case Study, 21st International Conference on Software Engineering, Los Angeles, CA., 1999, 345-354.
  • [4] Chidamber, S.R., and Kemerer, C.F.: Towards a Metrics Suite for Object Oriented design, in A. Paepcke, (ed.) Proc. Conference on Object-Oriented Programming: Systems, Languages and Applications (OOPSLA'91), October 1991. Published in SIGPLAN Notices, 26 (11), 1991, 197-211.
  • [5] Chidamber, S.R., and Kemerer, C.F.: A Metrics Suite for Object Oriented Design, IEEE Transactions on Software Engineering, 20 (6), 1994, 476-493.
  • [6] Dobing, B., and Parsons, J.: How UML is used, Communication of the ACM, 49 (5), 2006, 109-113.
  • [7] Dori, D.: Object-process analysis: Maintaining the balance between system structure and behavior, Journal of Logic and Computation, 5 (2), 1995, 227-249.
  • [8] Dori, D.: Object-Process Methodology: A Holistic Systems Paradigm. Springer, Berlin-New York, 2002.
  • [9] Engel, A., Last, M.: Modeling software testing costs and risks using fuzzy logic paradigm, The Journal of Systems and Software 80, 2007, 817-835.
  • [10] Erickson, J., and Siau, K.: Can UML Be Simplified? Practitioner Use of UML in Separate Domains, In H.A. (Erik) Proper, T.A. Halpin, and J. Krogstie, editors, Proceedings of the Workshop on Exploring Modeling Methods for Systems Analysis and Design (EMMSAD'07), Trondheim, Norway, Tapir Academic Press, Trondheim, Norway, 2007, 87-96.
  • [11] Fei, Z., Liu, X.: F-COCOMO: fuzzy constructive cost model in software engineering, IEEE International Conference on Fuzzy Systems, 1992, 331-337.
  • [12] Firesmith, D. G., Henderson-Sellers, B., Graham, I., Page-Jones, M.: Open Modeling Language (OML) reference Manual, SIGS Books and Multimedia, 1998.
  • [13] Henderson-Seller, B., Simons, A., and Younessi, H.: The OPEN Toolbox of Techniques, Addison Wesley, Reading, MA, 1998.
  • [14] ISO/IEC DIS 14598-1, Information Technology Product Evaluation, Part 1: General Overview.
  • [15] Kamandi, A. and Habibi, J.: Evaluating UML according to modeling language design principles and new requirements, In Proceeding of 3rd Information and Knowledge Technology Conference (IKT07), 2007.
  • [16] Kamandi, A., and Habibi, J.: A Framework for Classifying and Comparing Graphical Object Oriented Modeling Languages, The 2008 IAENG International Conference on Software Engineering (ICSE'08), Part of the International Multi-Conference of Engineers and Computer Scientists 2008 (IMECS 2008), International Association of Engineers (IAENG), Hong Kong, 2008, 897-902.
  • [17] Kamandi, A., and Habibi, J.: Modeling languages study and evaluation techniques, Second Asia International Conference on Modelling and Simulation, Kuala Lumpur,Malaysia, 13-15 May, 2008, 553-558.
  • [18] Krogstie, J.: Evaluating UML using a generic quality framework, In Idea Group Publishing (Eds.), UML and Unified Process, 2003, 1-22.
  • [19] Lima Junior, O. S., Muniz Farias, P. P., and Belchior, A. D.: A Fuzzy Model for Function Point Analysis to Development and Enhancement Project Assessments, CLEI Electronic Journal 5 (2), 1999.
  • [20] Liu, Y., Wenyin, L. and Jiang, C.: Object-Process diagrams as explicit graphic tool for Web Service composition, Journal of Integrated Design and Process Science, 8 (1), 2004, 113-127.
  • [21] Mayer, R.: Models for Understanding, Review of Educational Research 59, 1989, 43-64.
  • [22] Object Management Group: The MOF 2.0 (06-01-01) Specification: http://www.omg.org/mof, 2006.
  • [23] Object Management Group: The UML 2.1.2 (07-11-04) Infrastructure Specification, http://www.omg.org/uml, 2007.
  • [24] Object Management Group: The UML 2.1.2 (07-11-02) Superstructure Specification, http://www.omg.org/uml, 2007.
  • [25] Otero, M. C., and Dolado, J. J.: An initial experimental assessment of the dynamic modeling in UML, Empirical Software Engineering 7, 2002, 27-47.
  • [26] Otero, M. C., and Dolado, J. J.: An empirical comparison of the dynamic modeling in OML and UML, The Journal of Systems and Software 77, 2005, 91-102.
  • [27] Paige R. F., Ostroff, J. S., and Brooke, P. J.: Principles for modeling language design, Infromation and Software Technology, 42, 2000, 665-675.
  • [28] Peleg, M., and Dori, D.: The model multiplicity problem: Experimenting with real-time specification methods. IEEE Transaction on Software Engineering, 26(8), 2000, 742-759.
  • [29] Reinhartz-Berger, I., Dori, D.: OPM vs. UML-Experimenting with Comprehension and Construction ofWeb Application Models, Empirical Software Engineering (Springer), 10, 2005, 57-79.
  • [30] Rossi, M. and Brinkkemper, S.: Complexity Metrics for Systems Development Methods and Techniques, Information Systems, 21 (2), 1996, 209-227.
  • [31] Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Lorenson, W.: Object-Oriented Modeling and Design, Englewood Cliffs: Prentice-Hall, 1991.
  • [32] Sahraoui, H. A., Boukadoum,M. and Lounis, H.: Building Quaility Estimation models with Fuzzy Threshold Values, L'Objet, 17 (4), Edition Hermes Sciences, 2001, 535-554.
  • [33] Siau, K., and Cao, Q.: Unified Modeling Language: A complexity analysis, Journal of Database Management 12 (1), 2001, 26-34.
  • [34] Shoval P. and Shiran, S.: Entity-relationship and object-oriented data modeling - an experimental comparison of design quality, Data and Knowledge Engineering, 21(3), 1997.
  • [35] Staron, M., Kuzniarz, L., andWohlin, C.: Empirical assessment of using stereotypes to improve comprehension of UML models: A set of experiments, The Journal of Systems and Software, 79, 2006, 727-742.
  • [36] Sweller, J.: Cognitive load During Problem Solving: Effects on learning, Cognitive Science, 12, 1988, 257-285.
  • [37] Walden, K., and Nerson, J.: Seamless Object-Oriented Software Architecture, Prentice-Hall, Englewood Cliffs, NJ., 1995.
  • [38] Wang, Y.: On Cognitive Informatics, Brain and Mind, 4, 2003, 151-167.
  • [39] Wang, Y., wang, Y., Patel, S. and Patel, D.: A Layered Reference Model of the Brain (LRMB), IEEE Trans. on Systems, Man, and Cybernetics (Part C), 36 (2), 2006.
  • [40] Wang, Y.: The Theoretical Framework of Cognitive Informatics, Int'l Journal of Cognitive Informatics and Natural Intelligence, 1(1), 2007, 1-27.
  • [41] Williams,M. G., and Buehler, N.: Comparison of visual and textual languages via task modeling, Int. Journal Human-Computer Studies, 51, 1999, 89-115.
  • [42] Xu, Z., Khoshgoftaar, T. M.: Identification of fuzzy models of software cost estimation, Fuzzy Sets and Systems 145, 2004, 141-163.
  • [43] Zendler, A., Pfeiffer, T., Eicks, M., and Lehner, F.: Experimental comparison of coarse-grained concepts in UML, OML and TOS, Journal of Systems and Softwares 57 (1), 2001, 21-30.
  • [44] Zimmemann, H. J.: Fuzzy set theory and its applications, 3rd Ed., Kluwer Academic Publishers, 1996.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0004-0021
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.