PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Particulate organic carbon in the southern Baltic Sea: numerical simulations and experimental data

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Particulate Organic Carbon (POC) is an important component in the carbon cycle of land-locked seas. In this paper, we assess the POC concentration in the Gdańsk Deep, southern Baltic Sea. Our study is based on both a 1D POC Model and current POC concentration measurements. The aim is twofold: (i) validation of simulated concentrations with actual measurements, and (ii) a qualitative assessment of the sources contributing to the POC pool. The POC model consists of six coupled equations: five diffusion-type equations for phytoplankton, zooplankton, pelagic detritus and nutrients (phosphate and total inorganic nitrogen) and one ordinary differential equation for detritus at the bottom. The POC concentration is determined as the sum of phytoplankton, zooplankton and pelagic detritus concentrations, all expressed in carbon equivalents. Bacteria are not simulated in this paper. The observed large fluctuations of POC concentrations are attributed to its appreciable seasonal variability. The maximum concentration of POC varied between 870 mgC m-3 in May and 580 mgC m-3 in September, coinciding with the period of maximum dead organic matter and phytoplankton biomass concentrations. The results of the numerical simulations are in good agreement with observed values. The difference between the modelled and observed POC concentrations is equal to 3-28% and depends on the month for which the calculations were made, although no time trend of the difference is observed. The conclusion is that the numerical simulations are a sufficiently good reflection of POC dynamics in the Baltic.
Czasopismo
Rocznik
Strony
621--648
Opis fizyczny
bibliogr. 39 poz., tab., wykr.
Twórcy
autor
autor
  • Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, PL-81-712 Sopot, Poland, dzierzb@iopan.gda.pl
Bibliografia
  • 1.Andersson A., Rudehäll å., 1993, Proportion of plankton biomass in particulate organic carbon in the northern Baltic Sea, Mar. Ecol. Prog.-Ser., 95, 133-139.
  • 2.Billen G., Lancelot C., Maybeck M., 1991, N, P and Si retention along the aquatic continuum form land to ocean, [in:] Ocean margin process in global change, R. F.C. Mantoura, J.M. Martin &R. Wollast (eds.), Phys. Chem., Earth. Sci. Res., Rep. 9, 19-44.
  • 3.BMEPC - Baltic Marine Environment Protection Commission, 1983, Guidelines for the Baltic monitoring programme for the second stage, BSEP 12, Helsinki Commiss.
  • 4.Burska D., Pryputniewicz D., Falkowska L., 2005, Stratification of particulate organic carbon and nitrogen in the Gdańsk Deep (southern Baltic Sea), Oceanologia, 47 (2), 201-217.
  • 5.Czyszek W., Wensierski W., Dera J., 1979, Solar radiation energy inflow and absorption in Baltic water, Stud. Mater. Oceanol., 26, 105-140, (in Polish).
  • 6.Chester R., 2003, Marine geochemistry, 2nd edn., Blackwell Sci., London, 506 pp.
  • 7.De Haas H., vanWeering T.C.E., de Stigter H., 2002, Organic carbon in shelf seas: sink or sources, processes and products, Cont. Shelf Res., 22, 691-717.
  • 8.Doney S.C., Linsay K., Moore J.K., 2003, Global ocean carbon cycle modeling, [in:] Ocean biogeochemistry, M. J.R. Fasham (ed.), Springer-Verl., Berlin, Heidelberg, 217-238.
  • 9.Dzierzbicka-Głowacka L., 2005, Modelling the seasonal dynamics of marine plankton in the southern Baltic Sea. Part 1. A Coupled Ecosystem Model, Oceanologia, 47 (4), 591-619.
  • 10.Dzierzbicka-Głowacka L., 2006, Modelling the seasonal dynamics of marine plankton in the southern Baltic Sea. Part 2. Numerical simulations, Oceanologia, 48 (1), 41-71.
  • 11.Dzierzbicka-Głowacka L., Bielecka L., Mudrak S., Seasonal dynamics of Pseudocalanus minutus elongatus and Acartia spp. in the southern Baltic Sea (Gdańsk Deep), Biogeosciences, 3 (4), 635-650.
  • 12.Edler L. (ed.), 1979, Recommendation on methods of marine biological studies in the Baltic Sea. Phytoplankton and chlorophyll, Baltic Mar. Biol. Publ. No. 5, 38 pp.
  • 13.Ferrari G.M., Dowell M.D., Grossi S., Targa C., 1996, Relationship between the optical properties of chromophoric dissolved organic matter and total concentration of dissolved organic carbon in the southern Baltic Sea region, Mar. Chem., 55 (3-4), 299-316.
  • 14.Grasshoff K., EhrhardtM., Kremling K. (eds.), 1983, Methods of seawater analysis, 2nd. edn., Verlag Chem., Weinheim, 419 pp.
  • 15.GrzybowskiW., Pempkowiak J., 2003, Preliminary results on low molecular weight organic substances dissolved in the waters of the Gulf of Gdańsk, Oceanologia, 45 (4), 693-704.
  • 16.Haitzer M., Hőss S., Traunspurger W., Steinberg C., 1999, Relationship between concentration of dissolved organic matter (DOM) and the effect of DOM on the bioconcentration of benzo[a]pyrene, Aquat. Toxicol., 45 (2-3), 147-158.
  • 17.Hedges J. I., 2002, Why dissolved organics matter, [in:] Biogeochemistry of marine dissolved organic matter, D.A. Hansell & C.A. Carlson (eds.), Elsevier Sci., San Diego, 1-33.
  • 18.Jeffrey S.W., Humphrey G. F., 1975, New spectrophotometric equations for determining chlorophylls a, b, c in higher plants, algae and natural phytoplankton, Biochem. Physiol. Pflanzen, 1967, 191-194.
  • 19.Kuliński K., Pempkowiak J., 2008, Dissolved organic carbon in the southern Baltic Sea: Quantification of factors affecting its distribution, Estuar. Coast. Shelf Sci., 78 (1), 38-44.
  • 20.Kuosa H., Kivi K., 1989, Bacteria and heterotrophic flagellates in the pelagic carbon cycle in the northern Baltic Sea, Mar. Ecol. Prog.-Ser., 53, 93-100.
  • 21.Lassig J., Leppänen J.-M., Niemi Å., Tamelander G., 1978, Phytoplankton primary production in the Gulf of Bothnia 1972-1975 as compared with other parts of the Baltic Sea, Finn. Mar. Res., 244, 101-115.
  • 22.Lignell R., 1990, Excretion of organic carbon by phytoplankton: its relation to algal biomass, primary productivity and bacterial secondary productivity in the Baltic Sea, Mar. Ecol. Prog.-Ser., 68, 85-99.
  • 23.IMGW, 1996-1999, Environmental conditions in the Polish zone of the southern Baltic Sea during 1995 (...1998), B. Cyberska, Z. Lauer & A. Trzosińska (eds.), Mater. Oddz. Mor. Inst. Meteorol. Gosp. Wod., Gdynia, (in Polish with English summ.).
  • 24.IMGW, 2000, Environmental conditions in the Polish zone of the southern Baltic Sea during 1999, W. Krzymiński, E. Łysiak-Pastuszak & M. Miętus (eds.), Mater. Oddz. Mor. Inst. Meteorol. Gosp. Wod., Gdynia, 299 pp., (in Polish with English summ.).
  • 25.Mudrak S., 2004, Short- and long-term variability of zooplankton in coastal Baltic waters: using the Gulf of Gdańsk as an example, Ph.D. thesis, Gdańsk Univ., Gdynia, 328 pp. + Annex, (in Polish).
  • 26.Pempkowiak J., 1985, The input of biochemically labile and resistant organic matter to the Baltic Sea from the Vistula River, [in:] Transport of carbon and minerals in major world rivers, Pt. 3, E.T. Degens, S. Kempe & R. Herrera (eds.), Mitt. Geol.-Paläont. Inst. Univ. Hamburg, SCOPE/UNEP Sonderbd., 58, 345-350.
  • 27.Pempkowiak J., Widrowski M., Kuliński W., 1984, Dissolved organic carbon and particulate carbon in the southern Baltic in September, 1983, Proc. 14th Conf. Baltic Oceanogr., IMGW, Gdynia, 699-713.
  • 28.Rost B., Riebesell U., 2004, Coccolithophores and the biological pump: responses to environmental changes, [in:] Coccolithophores: from molecular processes to global impact, H.R. Thierstein & J.R. Young (eds.), Springer, Berlin, 99-125.
  • 29.Rozwadowska A., Isemer H.-J., 1998, Solar radiation fluxes at the surface of the Baltic Proper. Part 1. Mean annual cycle and influencing factors, Oceanologia, 40 (4), 307-330.
  • 30.Sabine C.L., Feely R.A., Gruber N., Key R.M., Lee K., Bullister J.L., Wanninkhof R.,Wong C. S.,Wallace D.W.R., Tilbrook B., Millero F. J., Peng T.-H., Kozyr Particulate Organic A., Ono T., Rios A. F., 2004, The oceanic sink for anthropogenic CO2, Science, 305 (5682), 367-371.
  • 31.Steele J.H., Henderson E.W., 1992, The role of predation in plankton models, J. Plankton Res., 14 (1), 157-172.
  • 32.Thomas H., Bozec Y., de Baar H. J.W., Elkalay K., Frankignoulle M., Schiettecatte L.-S., Kattner G., Borges A.V., 2005, The carbon budget of the North Sea, Biogeosciences, 2 (1), 87-96.
  • 33.Thomas H., Bozec Y., Elkalay K., de Baar H. J.W., 2004, Enhanced open ocean storage of CO2 from shelf sea pumping, Science, 304 (5673), 1005-1008.
  • 34.Turnewitsch R., Springer B.M., Kiriakoulakis K., Vilas J.C., Ar´ıstegui J.,Wolff G., Peine F., Werk S., Graf G., Waniek J. J., 2007, Determination of particulate organic carbon (POC) in seawater: the relative methodological importance of artificial gains and losses in two glass-fiber-based techniques, Mar. Chem., 105 (3-4), 208-228.
  • 35.Voipio A. (ed.), 1981, The Baltic Sea, Elsevier Sci., Amsterdam, 418 pp.
  • 36.Voss M., Emeis K.-C., Hille S., Neumann T., Dippner J.W., 2005, Nitrogen cycle of the Baltic Sea from an isotopic perspective, Global Biogeochem. Cy., 19, GB3001, doi:10.1029/2004GB002338.
  • 37.Wangersky P. J., 1977, The role of particulate matter in the productivity of surface waters, Helgol. Mar. Res., 30 (1), 546-564.
  • 38.Witek Z., 1995, Biological production and its utilization within a marine ecosystem in the western Gdańsk basin, Sea Fish. Inst., Gdynia, 145 pp., (in Polish).
  • 39.Witek Z. (ed.), 1993, Structure and function of marine ecosystem in Gdańsk Gulf on the basis of studies performed in 1987, Stud. Mater. Oceanol., 63 (Mar. Biol. 9), 5-125.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0003-0022
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.