PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fluorescence measured in situ as a proxy of CDOM absorption and DOC concentration in the Baltic Sea

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study presents results from field surveys performed in 2008 and 2009 in the southern Baltic in different seasons. The main goal of these measurements was to identify the empirical relationships between DOM optical properties and DOC. CDOM absorption and fluorescence and DOC concentrations were measured during thirteen research cruises. The values of the CDOM absorption coefficient at 370 nm aCDOM(370) ranged from 0.70 m-1 to 7.94 m-1, and CDOM fluorescence intensities (ex./em. 370/460) IFl, expressed in quinine sulphate equivalent units, ranged from 3.88 to 122.97 (in filtered samples). Dissolved organic carbon (DOC) concentrations ranged from 266.7 to 831.7 žM C. There was a statistically significant linear relationship between the fluorescence intensity measured in the filtered samples and the CDOM absorption coefficient aCDOM(370), R2 = 0.87. There was much more scatter in the relationship between the fluorescence intensity measured in situ (i.e. in unprocessed water samples) and the CDOM absorption coefficient aCDOM(370), resulting in a slight deterioration in the coefficient of determination R2 = 0.85. This indicated that the presence of particles could impact fluorometer output during in situ deployment. A calibration experiment was set up to quantify particle impact on the instrument output in raw marine water samples relative to readings from filtered samples. The bias calculated for the absolute percentage difference between fluorescence intensities measured in raw and filtered water was low (-2.05%), but the effect of particle presence expressed as the value of the RMSE was significant and was as high as 35%. Both DOM fluorescence intensity (in raw water and filtered samples) and the CDOM absorption coefficient aCDOM(370) are highly correlated with DOC concentration. The relationship between DOC and the CDOM absorption coefficient aCDOM(370) was better (R2 = 0.76) than the relationship between DOC and the respective fluorescence intensities measured in filtered and raw water (R2 = 0.61 and R2 = 0.56). The seasonal cycle had an impact on the relationship between DOC and CDOM optical properties. The hyperbolic relationships between aCDOM(370) vs. carbon-specific absorption coefficient a*CDOM(370), and IFl vs. the ratio of fluorescence intensity to organic carbon concentration IFl/DOC were very good. The discharge and mixing of riverine waters is a primary driver of variability in DOC and CDOM optical properties in the surface waters of the southern Baltic Sea, since all the parameters considered are negatively correlated with salinity. It was found that there was a positive trend of increasing values of DOM optical parameters with salinity increase (within a range of 8-12) in deep water below the permanent pycnocline. Evidence is also presented to show that late-summer photodegradation was responsible for the depletion of CDOM florescence intensities in the mixed layer above the seasonal thermocline. It was further demonstrated that the DOC concentration increases in the stagnant waters of the Baltic Sea deeps. The Integrated Optical-Hydrological Probe, which registers high-resolution vertical profiles of salinity, temperature, CDOM and the optical properties of water, confirmed that DOM optical proxies can be used in studies of DOM biogeochemical cycles in the Baltic Sea.
Słowa kluczowe
Czasopismo
Rocznik
Strony
431--471
Opis fizyczny
bibliogr. 75 poz., tab., wykr.
Twórcy
autor
autor
autor
autor
  • Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, PL-81-712 Sopot, Poland, piotr@iopan.gda.pl
Bibliografia
  • 1.Bélanger S., Babin M., Larouche P., 2008, An empirical ocean color algorithm for estimating the contribution of chromophoric dissolved organic matter to totallight absorption in optically complex waters, J. Geophys. Res., 113, C04027, doi:10.1029/2007JC004436.
  • 2.Bélanger S., Xie H., Krotkov N., Larouche P., Vincent W. F., Babin M., 2006, Photomineralization of terrigenous dissolved organic matter in Arctic coastal waters from 1979 to 2003: Interannual variability and implications of climate change, Global Biogeochem. Cy., 20 (4), GB4005, doi:10.1029/2006GB002708.
  • 3.Belzile C., Roesler C. S., Christensen J.P., Shakhova N., Semiletov I., 2006, Fluorescence measured using the WETStar DOM fluorometer as a proxy for dissolved matter absorption, Estuar. Coast. Shelf Sci., 67 (3), 441-449.
  • 4.Blough N.V., Del Vecchio R., 2002, Chromophoric DOM in the coastal environment, [in:] Biogeochemistry of marine dissolved organic matter, D. Hansell & C. Carlson (eds.), Acad. Press, New York, 509-546.
  • 5.Boss E., Pegau W. S., Zaneveld J.R., Barnard A.H., 2001, Spatial and temporal variability of absorption by dissolved material at a continental shelf, J. Geophys. Res., 106 (C5), 9499-9507.
  • 6.Chen R. F., Zhang Y., Vlahos P., Rudnick S.M., 2002, The fluorescence of dissolved organic matter in the Mid-Atlantic Bight, Deep-Sea Res. Pt. II, 49 (20), 4439-4459.
  • 7.Coble P.G., 2007, Marine optical biogeochemistry: the chemistry of ocean color, Chem. Rev., 107 (2), 402-418.
  • 8.Conmy R.N., Coble P.G., Del Castillo C.E., 2004, Calibration and performance of a new in situ multi-channel fluorometer for measurement of colored dissolved organic matter in the ocean, Cont. Shelf Res., 24 (3), 431-442.
  • 9.Darecki M., Weeks A., Sagan S., Kowalczuk P., Kaczmarek S., 2003, Optical characteristics of two contrasting case 2 waters and their influence on remote sensing algorithms, Cont. Shelf Res., 23 (3-4), 237-250.
  • 10.Del Castillo C.E., Coble P.G., Morell J.M., Lopez J.M., Corredor J.E., 1999, Analysis of the optical properties of the Orinoco River plume by absorption and fluorescence spectroscopy, Mar. Chem., 66 (1-2), 35-51.
  • 11.Del Castillo C.E., Miller R. L., 2008, On the use of ocean color remote sensing to measure the transport of dissolved organic carbon by the Mississippi River Plume, Remote Sens. Environ., 112 (3), 836-844.
  • 12.Del Vecchio R., Blough N.V., 2004, Spatial and seasonal distribution of chromophoric dissolved organic matter and dissolved organic carbon in the Middle Atlantic Bight, Mar. Chem., 89 (1-4), 169-187.
  • 13.Del Vecchio R., Subramaniam A., Schollaert Uz S., Ballabrera-Poy J., Brown C.W., Blough N.V., 2009, Decadal time-series of SeaWiFS retrieved CDOM absorption and estimated CO2 photoproduction on the continental shelf of the eastern United States, Geophys. Res. Lett., 36, L02602, doi:10.1029/2008GL036169.
  • 14.D'Sa E. J., Miller R. L., 2003, Bio-optical properties in waters influenced by the Mississippi River during low flow conditions, Remote Sens. Environ., 84 (4), 538-549.
  • 15.Duursma E.K., 1965, The dissolved organic constituents of seawater, [in:] Chemical oceanography, Vol 1., J.P. Riley & G. Skirrow (eds.), Acad. Press, London, 433-475.
  • 16.Ferrari G., 2000, The relationship between chromophoric dissolved organic matter and dissolved organic carbon in the European Atlantic coastal area and in the West Mediterranean Sea (Gulf of Lions), Mar. Chem., 70 (4), 339-357.
  • 17.Ferrari G., Dowell M.D., 1998, CDOM absorption characteristics with relation to fluorescence and salinity in coastal areas of the southern Baltic Sea, Estuar. Coast. Shelf Sci., 47 (1), 91-105.
  • 18.Ferrari G., Dowell M.D., Grossi S., Targa C., 1996, Relationship between optical properties of chromophoric dissolved organic matter and total concentration of dissolved organic carbon in southern Baltic Sea region, Mar. Chem., 55 (3-4), 299-316.
  • 19.Ferrari G., Tassan S., 1991, On the accuracy of determining light absorption by 'yellow substance' through measurements of induced fluorescence, Limnol. Oceanogr., 36 (4), 777-786.
  • 20.Fichot C.G., Sathyendranath S., Miller W. L., 2008, SeaUV and SeaUV(C): Algorithms for the retrieval of UV/visible diffuse attenuation coefficients from ocean color, Remote Sens. Environ., 112 (4), 1584-1602.
  • 21.Garver S.A., Siegel D.A., 1997, Inherent optical property inversion of ocean color spectra and its biogeochemical interpretation, 1. Time series from the Sargasso Sea, J. Geophys. Res., 102 (C8), 18607-18625.
  • 22.Green S.A., Blough N.V., 1994, Optical absorption and fluorescence properties of chromophoric dissolved organic matter in natural waters, Limnol. Oceanogr., 39 (8), 1903-1916.
  • 23.Grzybowski W., 2000, Effect of short-term irradiation on the absorbance spectra of the chromophoric organic matter dissolved in the coastal and riverine waters, Chemosphere, 40 (12), 1313-1318.
  • 24.Grzybowski W., 2002, The significance of dissolved organic matter photodegradation as a source of ammonium in natural waters, Oceanologia, 44 (3), 355-365.
  • 25.GrzybowskiW., Pempkowiak J., 2003, Preliminary results on low molecular weight organic substances dissolved in the waters of the Gulf of Gdańsk, Oceanologia, 45 (4), 693-704.
  • 26.Hansell D.A., Carlson C.A., 1998, Deep-ocean gradients in the concentration of dissolved organic carbon, Nature, 395 (6699), 263-266.
  • 27.Hansell D.A., Carlson C.A., 2001, Marine dissolved organic matter and the carbon cycle, Oceanography, 14 (4), 41-49.
  • 28.Hoge F.E., Swift R.N., Yungel J.K., Vodacek A., 1993a, Fluorescence of dissolved organic matter: A comparison of North Pacific and North Atlantic Oceans during April 1993, J. Geophys. Res., 98 (C12), 22 779-22 787.
  • 29.Hoge F.E., Vodacek A., Blough N.V., 1993b, Inherent optical properties of the ocean: retrieval of the absorption coefficient of chromophoric dissolved organic matter from fluorescence measurements, Limnol. Oceanogr., 38 (7), 1394-1402.
  • 30.Hojerslev N.K., 1988, Natural occurrences and optical effects of Gelbstoff, Rep. No. 50, Inst. Phys. Oceanogr., Univ. Copenhagen, 30 pp.
  • 31.Hojerslev N.K., 1989, Surface water quality studies in the interior marine environment of Denmark, Limnol. Oceanogr., 34 (8), 1630-1639.
  • 32.Hojerslev N.K., Holt N., Aarup T., 1996, Optical measurements in the North Sea-Baltic Sea transition zone. 1. On the origin of the deep water in the Kattegat, Cont. Shelf Res., 16 (10), 1329-4343.
  • 33.Jerlov N.G., 1976, Marine optics, Elsevier, New York, 231 pp.
  • 34.Johannessen S.C., Miller W. L., 2001, Quantum yield for the photochemical production of dissolved inorganic carbon in seawater, Mar. Chem., 76 (4), 271-283.
  • 35.Johannessen S.C., Miller W. L., Cullen J. J., 2003, Calculation of UV attenuation and colored dissolved organic matter absorption spectra from measurements of ocean color, J. Geophys. Res., 108 (C9), 3301, doi:10.1029/2000JC000514.
  • 36.Kahru M., Mitchell B.G., 2001, Seasonal and non-seasonal variability of satellite derived chlorophyll and colored dissolved organic matter concentration in the California Current, J. Geophys. Res., 106 (C2), 2517-2529.
  • 37.Kirk J.T.O., 1994, Light and photosynthesis in aquatic ecosystems, 2nd edn., Cambridge Univ. Press, New York, 509 pp.
  • 38.Kowalczuk P., 1999, Seasonal variability of yellow substance absorption in the surface layer of the Baltic Sea, J. Geophys. Res., 104 (C12), 30047-30058.
  • 39.Kowalczuk P., Cooper W. J., Durako M. J., Kahn A.E., Gonsior M., Young H., 2010, Characterization of dissolved organic matter fluorescence in the South Atlantic Bight with use of PARAFAC model: Relationships between fluorescence and its components, absorption coefficients and organic carbon concentrations, Mar. Chem., 118 (1-2), 22-36.
  • 40.Kowalczuk P., Cooper W. J., Whitehead R. F., Durako M. J., Sheldon W., 2003, Characterization of CDOM in organic rich river and surrounding coastal ocean in the South Atlantic Bight, Aquat. Sci., 65 (4), 384-401.
  • 41.Kowalczuk P., Darecki M., 1998, The relative share of light absorption by yellow substances in total light absorption in the surface layer of southern Baltic Sea, Proc. Ocean Optics XIV Conf., Kailua Kona, Hawaii, USA, 10-13 November 1998, paper 1052, 9 pp.
  • 42.Kowalczuk P., Darecki M., Olszewski J., Kaczmarek S., 2005, Empirical relationships between Coloured Dissolved Organic Matter (CDOM) absorption and apparent optical properties in Baltic Sea waters, Int. J. Remote Sens., 26 (2), 345-370.
  • 43.Kowalczuk P., Kaczmarek S., 1996, Analysis of temporal and spatial variability of 'yellow substance' absorption in the Southern Baltic, Oceanologia, 38 (1), 3-32.
  • 44.Kowalczuk P., Stedmon C.A., Markager S., 2006, Modeling absorption by CDOM in the Baltic Sea from season, salinity and chlorophyll, Mar. Chem., 101 (1-2), 1-11.
  • 45.Kuliński K., 2010, Carbon cycling in the Baltic Sea, Ph.D. thesis, Inst. Oceanol. PAN, Sopot, 134 pp., (in Polish).
  • 46.Kuliński K., Pempkowiak J., 2008, Dissolved organic carbon in the southern country-regionBaltic Sea: Quantification of factors affecting its distribution, Estuar. Coast. Shelf Sci., 78 (1), 38-44.
  • 47.Mannino A., Russ M.E., Hooker S.B., 2008, Algorithm development and validation for satellite-derived distributions of DOC and CDOM in the U.S. Middle Atlantic Bight, J. Geophys. Res., 113, C07051, doi:10.1029/2007JC004493.
  • 48.Maritorena S., Siegel D.A., Peterson A.R., 2002, Optimization of a semi-analytical ocean color model for global-scale applications, Appl. Optics, 41 (15), 2705-2714.
  • 49.Morel A., Prieur L., 1977, Analysis in variation of ocean color, Limnol. Oceanogr., 22 (4), 709-722.
  • 50.Nelson N.B., Siegel D.A., Carlson C.A., Swan C., Smethie Jr. W.M., Khatiwala S., 2007, Hydrography of chromophoric dissolved organic matter in the North Atlantic, Deep-Sea Res. Pt. I, 54 (5), 710-731.
  • 51.Nyquist G., 1979, Investigation of some optical properties of sea water with special reference to lignin sulphates and humic substances, Ph.D. thesis, Dpt. Anal. Mar. Chem., Gőteborg Univ., Gőteborg, 203 pp.
  • 52.Ochocki S., Nakonieczny J., Chmielowski H., Zalewski M., 1995, The hydrochemical and biological impact of the river Vistula on the pelagic system of the Gulf of Gdańsk in 1994. Part 2. Primary production and chlorophyll a, Oceanologia, 37 (2), 207-226.
  • 53.Olszewski J., Sagan S., Darecki M., 1992, Spatial and temporal changes in some optical parameters in the southern Baltic, Oceanologia, 33, 87-103.
  • 54.Pempkowiak J., Kupryszewski G., 1980, The input of organic matter to the Baltic from the Vistula River, Oceanologia, 12, 79-98.
  • 55.Rochelle-Newall E. J., Fisher T.R., 2002a, Chromophoric dissolved organic matter and dissolved organic carbon in Chesapeake Bay, Mar. Chem., 77 (1), 23-41.
  • 56.Rochelle-Newall E. J., Fisher T.R., 2002b, Production of chromophoric dissolved organic matter fluorescence in marine and estuarine environments: an investigation into the role of phytoplankton, Mar. Chem., 77 (1), 7-21.
  • 57.Rochelle-Newall E. J., Fisher T.R., Fan C. L., Glibert P.M., 1999, Dynamics of chromophoric dissolved organic matter and dissolved organic carbon in experimental mesocosms, Int. J. Remote Sens., 20 (3), 627-641.
  • 58.Reuter R., Diebel-Langohr D., Dőrre F., Hengstermann T., 1986, Airborne laser fluorosensor measurements of Gelbstoff, [in:] The influence of yellow substances on remote sensing of sea water constituents from space, Rep. ESA Contract RFQ 3-5060/84/NL/MD, GKSS Res. Cent., Geesthacht, Germany.
  • 59.Sagan S., 1991, Light transmission in the water of the southern Baltic Sea, Diss. Monogr. 2, Inst. Oceanol. PAN, Sopot, 137 pp., (in Polish).
  • 60.Sathyendranath S. (ed.), 2000, Remote sensing of ocean colour in coastal, and other optically-complex, waters, IOCCG Rep. No. 3, Dartmouth, CA, 140 pp.
  • 61.Siegel D.A., Maritorena S., Nelson N. B., Behrenfeld M. J., 2005a, Independence and interdependencies among global ocean color properties: Reassessing the bio-optical assumption, J. Geophys. Res., 110, C07011, doi:10.1029/2004JC002527.
  • 62.Siegel D.A., Maritorena S., Nelson N.B., Behrenfeld M. J., McClain C.R., 2005b, Colored dissolved organic matter and its influence on the satellite-based characterization of the ocean biosphere, Geophys. Res. Lett., 32, L20605, doi:10.1029/2005GL024310.
  • 63.Siegel D.A., Maritorena S., Nelson N.B., Hansell D.A., Lorenzi-Kayser M., 2002, Global distribution and dynamics of colored dissolved and detrital organic materials, J. Geophys. Res., 107 (C12), 3228, doi:10.1029/2001JC000965.
  • 64.Shank G.C., Zepp R.G., Whitehead R. F., Moran M.A., 2005, Variations in the spectral properties of freshwater and estuarine CDOM caused by partitioning onto river and estuarine sediments, Estuar. Coast. Shelf Sci., 65 (1-2), 289-301.
  • 65.Sharp J.H., 2002, Analytical methods for total DOM pools, [in:] Biogeochemistry of marine dissolved organic matter, D.A. Hansell & C.A. Carlson (eds.), Acad. Press, San Diego, CA, 35-58.
  • 66.Skoog A., Hall P.O. J., Hulth S., Paxeus N., van der Loeff M.R., Westerlund S., 1996, Early diagenetic production and sediment-water exchange of fluorescent dissolved organic matter in the coastal environment, Geochim. Cosmochim. Ac., 60 (19), 3619-3629.
  • 67.Skoog A., Wedborg M., Fogelqvist E., 2010, Organic carbon concentrations and humic substance fluorescence in the Baltic Sea, Kattegatt, and Skagerrak, Mar. Chem., (in revision).
  • 68.Stedmon C.A., Markager S., Kaas H., 2000, Optical properties and signatures of chromophoric dissolved organic matter (CDOM) in Danish coastal waters, Estuar. Coast. Shelf Sci., 51 (2), 267-278.
  • 69.Stedmon C.A., Osburn C. L., Kragh T., 2010, Tracing water mass mixing in the Baltic-North Sea transition zone using the optical properties of coloured dissolved organic matter, Estuar. Coast. Shelf Sci., 87 (1), 156-162.
  • 70.Twardowski M. S., Donaghay P.L., 2001, Separating in situ and terrigenous sources of absorption by dissolved organic materials in coastal waters, J. Geophys. Res., 106(C7), 2545-2560.
  • 71.Vodacek A., Blough N.V., DeGrandpre M.D., Peltzer E.T., Nelson R.K., 1997, Seasonal variation of CDOM and DOC in the Middle Atlantic Bight: terrestrial inputs and photooxidation, Limnol. Oceanogr., 42 (2), 674-686.
  • 72.Vodacek A., Hoge F., Swift R.N., Yungel J.K., Peltzer E.T., Blough N.V., 1995, The use of in situ and airborne fluorescence measurements to determine UV absorption coefficients and DOC concentrations in surface waters, Limnol. Oceanogr., 40 (2), 411-415.
  • 73.Woźniak B., Dera J., 2007, Light absorption in sea water, Springer, Dordrecht, 456 pp.
  • 74.Zaneveld J.R.V., Kitchen J.C., Moore C., 1994, The scattering error correction of reflecting-tube absorption meters, Ocean Optics XII, Proc. SPIE, 2258, 44-55.
  • 75.Zepp R., Schlotzhauer P.F., 1981, Comparison of photochemical behaviour of various humic substances in water: 3. Spectroscopic properties of humic substances, Chemoshpere, 10 (5), 479-486.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0003-0015
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.