PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

In situ measurements and satellite remote sensing of case 2 waters: first results from the Curonian Lagoon

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study we present calibration/validation activities associated with satellite MERIS image processing and aimed at estimating chl a and CDOM in the Curonian Lagoon. Field data were used to validate the performances of two atmospheric correction algorithms, to build a band-ratio algorithm for chl a and to validate MERIS-derived maps. The neural network-based Case 2 Regional processor was found suitable for mapping CDOM; for chl a the band-ratio algorithm applied to image data corrected with the 6S code was found more appropriate. Maps were in agreement with in situ measurements. This study confirmed the importance of atmospheric correction to estimate water quality and demonstrated the usefulness of MERIS in investigating eutrophic aquatic ecosystems.
Słowa kluczowe
Czasopismo
Rocznik
Strony
197--210
Opis fizyczny
bibliogr. 32 poz., fot., tab., wykr.
Twórcy
autor
autor
autor
Bibliografia
  • 1.Baker K. S., Smith R.C., 1990, Irradiance transmittance through the air-water interface, Ocean Optics X, R. W. Spinrad (ed.), Proc. SPIE, 1302, 556-565.
  • 2.Beutler M., Wiltshire K.H., Meyer B., Moldaenke C., Lüring C., Meyerhőfer M., Hansen U.-P., Dau H., 2002, A fluorometric method for the differentiation of algal populations in vivo and in situ, Photosynth. Res., 72 (1), 39-53.
  • 3.Breber P., Povilanskas R., Armaitien˙e A., 2008, Recent evolution of fishery and land reclamation in Curonian and Lesina lagoons, Hydrobiologia, 611 (1), 105-114.
  • 4.Dall'Olmo G., Gitelson A.A., 2005, Effect of bio-optical parameter variability on the remote estimation of chlorophyll-a concentration in turbid productive waters: experimental results, Appl. Optics, 44 (3), 412-422.
  • 5.Dall'Olmo G., Gitelson A.A., Rundquist D.C., 2003, Towards a unified approach for remote estimation of chlorophyll-a in both terrestrial vegetation and turbid productive waters, Geophys. Res. Lett., 30 (18), 1938.
  • 6.Dekker A.G., 1993, Detection of optical water quality parameters for eutrophic waters by high resolution remote sensing, Ph.D. thesis, Free University, Amsterdam; The Netherlands.
  • 7.Doerffer R., Schiller H., 2008, MERIS regional coastal and lake case 2 water project - Atmospheric Correction ATBD, v. 1.0, May 2008, GKSS Res. Centre, Geesthacht.
  • 8.Floricioiu D., Rott H., 2005, Atmospheric correction of MERIS data over perialpine regions, MERIS-(A)ATSR Workshop, Frascati, Italy, 26-30 September 2005, CD-ROM ISBN 92-9092-908-1 ESA.
  • 9.Fomferra N., Brockmann C., 2005, Beam - the ENVISAT MERIS and AATSR toolbox, Proc. MERIS-(A)ATSR Workshop, Frascati, Italy, ESA/ESRIN, [http://www.brockmann-consult.de/beam/].
  • 10.Giardino C., Brando V.E., Dekker A.G., Strőmbeck N., Candiani G., 2007, Assessment of water quality in Lake Garda (Italy) using Hyperion, Remote Sens. Environ., 109 (2), 183-195.
  • 11.Gitelson A., 1992, The peak near 700 nm on radiance spectra of algae and water: relationship of its magnitude and position with chlorophyll concentration, Int. J. Remote Sens., 13 (17), 3367-3373.
  • 12.Gitelson A.A., Schalles J. F., Hladik C.M., 2007, Remote chlorophyll-a retrieval in turbid, productive estuaries: Chesapeake Bay case study, Remote Sens. Environ., 109 (4), 464-472.
  • 13.Han F.G., Rundquist D.C., 1997, Comparison of NIR/RED ratio and first derivate of reflectance in estimating algal-chlorophyll concentration: A case study in a turbid reservoir, Remote Sens. Environ., 62 (3), 253-261.
  • 14.Kahru M., Savchuk O.P., Elmgren R., 2007, Satellite measurements of cyanobacterial bloom frequency in the Baltic Sea: interannual and spatial variability, Mar. Ecol.-Prog. Ser., 343, 15-23.
  • 15.Keller P.A., 2001, Comparison of two inversion techniques of a semi-analytical model for the determination of lake water constituents using imaging spectrometry data, Sci. Total Environ., 268 (1-3), 189-196.
  • 16.Kotchenova S.Y., Vermote E. F., Matarrese R., Klemm Jr. F. J., 2006, Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part I: Path radiance, Appl. Optics, 45 (26), 6762-6774.
  • 17.Kratzer S., Brockmann C., Moore G., 2008, Using MERIS full resolution data to monitor coastal waters - A case study from Himmerfjärden, a fjord-like bay in the northwestern Baltic Sea, Remote Sens. Environ., 112 (5), 2284-2300.
  • 18.Krevs A., Koreiviene J., Paskauskas R., Sulijiene R., 2007, Phytoplankton production and community respiration in different zones of the Curonian lagoon during the midsummer vegetation period, Trans. Waters Bull., 1 (1), 17-26.
  • 19.Kutser T., 2009, Passive optical remote sensing of cyanobacteria and other intense phytoplankton blooms in coastal and inland waters, Int. J. Remote Sens., 30 (17), 4401-4425.
  • 20.Kutser T., Metsamaa L., Strőmbeck N., Vahtmäe E., 2006, Monitoring cyanobacterial blooms by satellite remote sensing, Estuar. Coast. Shelf Sci., 67 (1-2), 303-312.
  • 21.Kutser T., Pierson D.C., Kallio K., Reinart A., Sobek S., 2005, Mapping lake CDOM by satellite remote sensing, Remote Sens. Environ., 94 (4), 535-540.
  • 22.Lorenzen C. J., 1967, Determination of chlorophyll and pheo-pigments: spectrophotometric equations, Limnol. Oceanogr., 12 (2), 343-346.
  • 23.Ložys L., 2004, The growth of pikeperch (Sander lucioperca L.) and perch (Perca fluviatilis L.) under different water temperature and salinity conditions in the Curonian Lagoon and Lithuanian coastal waters of the Baltic Sea, Hydrobiologia, 514 (1-3), 105-113.
  • 24.Morel A., Prieur L., 1977, Analysis of variations in ocean color, Limnol. Oceanogr., 22 (4), 709-722.
  • 25.Paldavičiene A., Mazur-Marzec H., Razinkovas H., 2009, Toxic cyanobacteria blooms in the Lithuanian part of the Curonian Lagoon, Oceanologia, 51 (2), 203-216.
  • 26.Pierson D.C., Strőmbeck N., 2001, Estimation of radiance reflectance and the concentrations of optically active substances in Lake Mälaren, Sweden, based on direct and inverse solutions of a simple model, Sci. Total Environ., 268 (1-3), 171-188.
  • 27.Reinart A., Kutser T., 2006, Comparison of different satellite sensors in detecting cyanobacterial bloom events in the Baltic Sea, Remote Sens. Environ., 102 (1-2), 74-85.
  • 28.Ruiz-Verdù A., Koponen S., Heege T., Doerffer R., Brockmann C., Kallio K., Pyhalahti T., Pena-Martiınez R., Polvorinos ` A., Heblinski J., Ylostalo P., Conde L., Odermatt D., Estellès V., Pulliainen J., 2008, Development of MERIS lake water algorithms: validation results from Europe, Proc. 2nd MERIS/(A)ATSR User Workshop, Frascati, Italy, ESA/ESRIN.
  • 29.Schalles J. F., 2006, Optical remote sensing techniques to estimate phytoplankton chlorophyll a concentrations in coastal waters with varying suspended matter and CDOM concentrations, [in:] Remote sensing of aquatic coastal ecosystem processes: Science and management applications, L. Richardson & E. Ledrew (eds.), Springer, Berlin, 27-79.
  • 30.Strőmbeck N., Pierson E., 2001. The effects of variability in the inherent optical properties on estimations of chlorophyll a by remote sensing in Swedish freshwaters, Sci. Total Environ., 268 (1-3), 123-137.
  • 31.Vermote E.F., Tanré D., Deuzé J. L., Herman M., Morcrette J. J., 1997, Second Simulation of the satellite signal in the solar spectrum, 6S: An overview, IEEE Geosci. Remote, 35 (3), 675-686.
  • 32.Zemlys P., Ertürk A., Razinkovas A., 2008, 2D finite element ecological model for the Curonian lagoon, Hydrobiologia, 611 (1), 167-179.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0003-0003
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.