PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Biomass yield in porous ceramic carriers for municipal wastewater tertreatment

Identyfikatory
Warianty tytułu
PL
Przyrost biomasy w porowatych nośnikach ceramicznych podczas oczyszczania ścieków komunalnych
Języki publikacji
EN
Abstrakty
EN
Two different porous ceramic carriers with immobilized activated sludge comprised a stationary filling of the reactors. Municipal wastewater was treated at hydraulic retention times from 15 to 70 min and internal circulation capacity of 20, 40 and 60 dm3.h-1. Depending on hydraulic retention time, the sludge yield ranged from 0.138 to 0.066 g TSS.g COD-1 in reactor I and from 0.175 to 0.107 g TSS.g COD-1 in reactor II. An increase in volumetric loading rate and internal circulation capacity caused a reduction in sludge yield. A decrease in the sludge yield corresponded to an increase in the ratio of endogenous to substrate respiration by the immobilized biomass.
PL
Przyrost biomasy w porowatych nośnikach ceramicznych podczas oczyszczania ścieków komunalnych Dwa porowate nośniki ceramiczne z unieruchomionym osadem czynnym stanowiły stacjonarne wypełnienie bioreaktorów, w których oczyszczaniu poddawano ścieki komunalne przy hydraulicznym czasie zatrzymania od 15 do 70 min i cyrkulacji wewnętrznej równej 20, 40 i 60 dm3.h-1. W zależności od hydraulicznego czasu zatrzymania, współczynnik przyrostu biomasy zmieniał się z 0,138 do 0,066 g TSS.g COD-1 w reaktorze I oraz z 0,175 do 0,107 g TSS.g COD-1 w reaktorze II. Zwiększenie obciążenia objętości reaktorów ładunkiem zanieczyszczeń oraz wydajności cyrkulacji wewnętrznej powodowało zmniejszenie przyrostu biomasy. Spadek przyrostu biomasy odpowiadał wzrostowi stosunku oddychania endogennego i substratowego unieruchomionej biomasy.
Rocznik
Strony
15--25
Opis fizyczny
bibliogr. 31 poz., tab., wykr.
Twórcy
  • University of Warmia and Mazury in Olsztyn, Department of Environmental Biotechnology Słoneczna str. 45G, 10-709 Olsztyn, Poland, magdalena.zielinska@uwm.edu.pl
Bibliografia
  • [1] Adham S., P. Gagliardo, L. Boulos, J. Oppenheimer, R. Trussell: Feasibility of the membrane bioreactor process for water reclamation, Water Sci. Technol., 43, 203-209 (2001).
  • [2] Aspegren H., U. Nyberg, B. Andersson, S. Gotthardsson, J.C. Jansen: Post denitrification in a moving bed biofilm reactor process, Water Sci. Technol., 38, 31-38 (1998).
  • [3] Aygun A., B. Nas, A. Berktay: Influence of high organic loading rates on COD removal and sludge production in moving bed biofilm reactor, Environ. Eng. Sci., 25, 1311-1316 (2008).
  • [4] Barnard J.L.: Design of wastewater treatment plant with activated sludge removing nutrients, [in:] Philosophy of designing and the exploitation of wastewater treatment plant, Kraków 2000, pp. 13-59.
  • [5] Benthum W.A.J. van, M.C.M. van Loosdrecht, J.J. Heijnen: Control of heterotrophic layer formation on nitrifying biofilms in a biofilm airlift suspension reactor, Biotechnol. Bioeng., 53, 397-405 (1997).
  • [6] Canales A., A. Pareilleux, J.L. Rols, G. Goma, A. Huyard: Decreased sludge production strategy for domestic wastewater treatment, Water Sci. Technol., 30, 97-106 (1994).
  • [7] Chiemchaisri C., K. Yamamoto: Biological nitrogen removal under low temperature in a membrane separation bioreactor, Water Sci. Technol., 28, 325-333 (1993).
  • [8] Choo K.H., H.D. Stensel: Sequencing batch membrane reactor treatment: nitrogen removal and membrane fouling evaluation, Water Environ. Res., 72, 490-498 (2000).
  • [9] Cicek N., H. Winnen, M.T. Suidan, B.E. Wrenn, V. Urbain, J. Manem: Effectiveness of the membrane bioreactor in the biodegradation of high molecular weight compounds, Water Res., 32, 1553-1563 (1998).
  • [10] Copp J.B., P.L. Dold: Comparing sludge production under aerobic and anoxic conditions, Water Sci. Technol., 38, 285-294 (1998).
  • [11] Çokgör E.U., S. Sözen, D. Orhon, M. Henze: Respirometric analysis of activated sludge behaviour - I. Assessment of the readily biodegradable substrate, Water Res., 32, 461-475 (1998).
  • [12] Gander M.A., B. Jefferson, S.J. Judd: Membrane bioreactors for use in small wastewater treatment plants: membrane materials and effluent quality, Water Sci. Technol., 41, 205-211 (2000).
  • [13] Ghyoot W., W. Verstraete: Reduced sludge production in a two-stage membrane-assisted bioreactor, Water Res., 34, 205-215 (2000).
  • [14] Guellil A., F. Thomas, J.C. Block, J.L. Bersillon, P. Ginestet: Transfer of organic matter between wastewater and activated sludge flocs, Water Res., 35, 143-150 (2001).
  • [15] Henze M., C. Mladenovski: Hydrolysis of particulate substrate by activated sludge under aerobic, anoxic and anaerobic conditions, Water Res., 25, 61-64 (1991).
  • [16] Jefferson B., A.L. Laine, S.J. Judd, T. Stephenson: Membrane bioreactors and their role in wastewater reuse, Water Sci. Technol., 41, 197-204 (2000).
  • [17] Krauth K., K.F. Staab: Pressurized bioreactor with membrane filtration for wastewater treatment, Water Res., 27, 405-411 (1993).
  • [18] Laspidou C.S., B.E. Rittmann: A unified theory for extracellular polymeric substances, soluble microbial products, and active and inert biomass, Water Res., 36, 2711-2720 (2002).
  • [19] Laspidou C.S., B.E. Rittmann: Modeling the development of biofilm density including active bacteria, inert biomass, and extracellular polymeric substances, Water Res., 38, 3349-3361 (2004).
  • [20] Loosdrecht M.C.M. van, M. Henze: Maintenance, endogenous respiration, lysis, decay and predation, Water Sci. Technol., 39, 107-117 (1999).
  • [21] Matsumura M., T. Yamamoto, P. Wang, K. Shinabe, K. Yasuda: Rapid nitrification with immobilized cell using macro-porous cellulose carrier, Water Res., 31, 1027-1034 (1997).
  • [22] Mayhew M., T. Stephenson: Biomass yield reduction: is biochemical manipulation possible without affecting activated sludge process efficiency?, Water Sci. Technol., 38, 137-144 (1998).
  • [23] Polish Standards: Polish Committee for Standardization, available from http://www.pkn.pl.
  • [24] Rosenberger S., U. Krüger, R. Witzig, W. Manz, M. Szewzyk, M. Kraume: Performance of a bioreactor with submerged membranes for aerobic treatment of municipal wastewater, Water Res., 36, 413-420 (2002).
  • [25] Rostron W.M., D.C. Stuckley, A.A. Young: Nitrification of high strength ammonia wastewaters: comparative study of immobilisation media, Water Res., 35, 1169-1178 (2001).
  • [26] Vieira M.J., L.F. Melo, M.M. Pinheiro: Biofilm formations: hydrodynamic effects on internal diffusion and structure, Biofouling, 7, 67-80 (1993).
  • [27] Wang B., J. Li, L. Wang, M. Nie, J. Li: Mechanism of phosphorus removal by SBR submerged biofilm system, Water Res., 32, 2633-2638 (1998).
  • [28] Wijeyekoon S., T. Mino, H. Satoh, T. Matsuo: Effects of substrate loading rate on biofilm structure, Water Res., 38, 2479-2488 (2004).
  • [29] Witzig R., W. Manz, S. Rosenberger, U. Krüger, M. Kraume, U. Szewzyk: Microbiological aspects of a bioreactor with submerged membranes for aerobic treatment of municipal wastewater, Water Res., 36, 394-402 (2002).
  • [30] Zhan X.M., M. Rodgers, E. O'Reilly: Biofilm growth and characteristics in an alternating pumped sequencing batch biofilm reactor (APSBBR), Water Res., 40, 817-825 (2006).
  • [31] Zhang X., P.L. Bishop: Spatial distribution of extracellular polymeric substances in biofilms, J. Environ. Eng., 127, 850-856 (2001).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0002-0059
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.