PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Molasses as a carbon source for denitrification

Identyfikatory
Warianty tytułu
PL
Melasa jako źródło węgla w procesie denitryfikacji
Języki publikacji
EN
Abstrakty
EN
The paper presents the results of an experiment with sugar-industry waste (molasses) as an organic carbon source for denitrification. The investigations concern the influence of untreated molasses and molasses after pretreatment (hydrolyzed molasses) and variable COD/N ratio (6.0; 5.0; 4.0) on denitrification efficiency and kinetics. Moreover, sludge production, in dependence on tested carbon source, was estimated. At COD/N ratio 6 and 5, regardless of applied organic carbon source (untreated molasses, hydrolyzed molasses), the denitrification efficiency was over 98%. However, from kinetic analysis it results that a kind of carbon source and COD/N ratio have an effect on denitrification rate. The highest nitrate removal rate - 9.5 mg NNOx/(dm3źh) was obtained at COD/N = 6 in the reactor with hydrolyzed molasses as a carbon source and the lowest - 5.14 mg NNOx/(dm3źh) in reactor with untreated molasses at COD/N = 5.0. The lowering of COD/N ratio to 4 caused decrease of the process efficiency to 27.6% (untreated molasses) and 44.3% (hydrolyzed molasses). Hydrolyzed molasses as a carbon source caused higher production of activated sludge. In reactors with untreated molasses Yobs equals 0.40 mg VSS/mg COD at COD/N ratio 6 and 0.31 mg VSS/mg COD at COD/N ratio 5. In reactors with molasses after hydrolysis Yobs were 1.35-fold and 1.5-fold higher, respectively. Since, the molasses hydrolysis results in rising costs of wastewater treatment and cause higher sludge production, untreated molasses seems to be a more suitable carbon source for denitrification.
PL
Praca zawiera wyniki badań dotyczące możliwości wykorzystania melasy - produktu odpadowego powstającego w przemyśle cukrowniczym - jako źródła węgla organicznego w procesie denitryfikacji. Badano wpływ hydrolizy melasy oraz stosunku ChZT/N (6,0; 5,0; 4,0) na efektywność i kinetykę procesu. Określono również przyrost osadu czynnego w zależności od rodzaju źródła węgla (melasa, melasa zhydrolizowana) oraz stosunku ChZT/N. Przy stosunku ChZT/N wynoszącym 6,0 i 5,0, niezależnie od formy występowania źródła węgla organicznego (melasa, melasa zhydrolizowana), efektywność denitryfikacji przekraczała 98%. Badania kinetyki procesu wykazały natomiast, że rodzaj źródła węgla oraz stosunek ChZT/N wpływały na szybkość denitryfikacji. Najwyższą szybkość procesu - 9,5 mg NNOx/(dm3źh) odnotowano przy ChZT/N wynoszącym 6,0 w reaktorze z melasą zhydrolizowaną a najniższą - 5,14 mg NNOx/(dm3źh) w reaktorze z melasą niezhydrolizowaną przy ChZT/N wynoszącym 5,0. Obniżenie stosunku ChZT/N do 4,0 spowodowało spadek efektywności procesu do 27,6% (melasa niezhydrolizowana) oraz 44,3% (melasa zhydrolizowana). Zastosowanie melasy zhydrolizowanej powodowało wyższy przyrost osadu czynnego. W reaktorach, gdzie źródłem węgla była melasa.
Rocznik
Strony
35--45
Opis fizyczny
bibliogr. 27 poz., tab., wykr.
Twórcy
autor
  • University of Warmia and Mazury in Olsztyn, Department of Environmental Biotechnology ul. Słoneczna 45G, 10-907 Olsztyn-Kortowo, Poland, dorotak@uwm.edu.pl
Bibliografia
  • [1] Æsøy A., Ødegaard H., Bach K., Pujol R., M. Hamon: Denitrification in a packed bed biofilm reactor (Biofor) - experiments with different carbon sources, Water Research, 32, 1463-1470 (1997).
  • [2] Aravinthan T., Mino S., Takizawa H., Satoh, T. Matsuo: Sludge hydrolysate as a carbon source for denitrification, Water Science and Technology, 43, 191-199 (2001).
  • [3] Barlindhaug J., H. Ødegaard: Thermal hydrolysate as a carbon source for denitrification, Water Science and Technology, 33, 99-108 (1996).
  • [4] Coelho M.A.Z., Russo C., O.Q.F. Araújo: Optimization of a sequencing batch reactor for biological nitrogen removal, Water Research, 34, 2809-2817 (2000).
  • [5] Constantin H., M. Fick: Influence on C-sources on the denitrification rate of a high-nitrate concentrated industrial wastewater, Water Research 31, 583-589 (1997).
  • [6] Doyle J., Watts S., Solley D., J. Keller: Exceptionally high-rate nitrification in sequencing batch reactors treating high ammonia landfill leachate, Water Science and Technology, 3/43, 315-322 (2001).
  • [7] Elefsiniotis P., D. Li: The effect of temperature and carbon source on denitrification using volatile fatty acids, Biochemical Engineering Journal, 28, 148-155 (2006).
  • [8] Elefsiniotis P., Wareham D.G., M.O Smith: Use of volatile fatty acids from an acid-phase digester for denitrification, Journal of Biotechnology, 114, 289-297 (2004).
  • [9] Foglar, L., F. Briski: Wastewater denitrification process - the influence of methanol and kinetic analysis, Process Biochemistry, 39, 95-103 (2003).
  • [10] Hasselblad S., S. Hallin: Intermittent addition of external carbon to enhance denitrification in activated sludge, Water Science and Technology, 37, 227-233 (1998).
  • [11] Kesserü P., Kiss I., Bihari Z., B. Polyak: Investigation of the denitrification activity of immobilized Pseudomonas butanovora cells in the presence of different organic substrates, Water Research, 36, 1565-1571 (2002).
  • [12] Kulikowska D., E. Klimiuk: Removal of organics and nitrogen from municipal landfill leachate in twostage SBR reactors, Polish Journal of Environmental Studies, 4/13, 389-396 (2004).
  • [13] Kulikowska D., J. Racka: Nitrogen removal from high-ammonia landfill leachate - the influence of external carbon source and kinetic analysis, under review.
  • [14] Lishman L.A., Legge R.L., G.J. FarQuhar: Temperature effects on wastewater treatment under aerobic and anoxic conditions, Water Research, 34, 2263-2276 (2000).
  • [15] Louzeiro N.R., Mavinic D.S., Oldham W.K., Meisend A., I.S. Gardnere: Methanol-induced biological nutrient removal kinetics in a full-scale sequencing batch reactor, Water Research, 36, 2721-2732 (2002).
  • [16] Majone M., Beccari M., Dionisi D., Levantesi C., V. Renzi: Role of storage phenomena on removal of different substrates during pre-denitrification, Water Science and Technology, 43, 151-158 (2001).
  • [17] McClintock S.A., Pattarkine V.M., C.W. Randall:Comparisons of yields and decay rates for a biological nutrient removal process and a conventional activated sludge process, Water Science and Technology, 26, 2195-2198 (1992).
  • [18] Moser-Engeler R., Udert K.M., Wild D., H. Siegrist: Products from primary sludge fermentation and their suitability for nutrient removal, Water Science and Technology, 38, 265-273 (1998).
  • [19] Najafpour, G.D., C.P. Shan: Enzymatic hydrolysis of molasses, Bioresource Technology, 86, 91-94 (2003).
  • [20] Nyberg U., Andersson B., H. Aspegren: Long-term experiences with external carbon sources for nitrogen removal, Water Science and Technology 33, 109-116 (1996).
  • [21] Pavan P., Battistoni P., Traverso P., Musacco A., F. Cecchi: Effect of addition of anaerobic fermented OFMSW (organic fraction of municipal solid waste) on biological nutrient removal (BNR) process: preliminary results, Water Science and Technology, 38, 327-334 (1998).
  • [22] Peng Y., Ma Y., S. Wang: Denitrification potential enhancement by addition of external carbon sources in a pre-denitrification process, Journal of Environmental Science, 3/9, 284-289 (2007).
  • [23] Pitter P., J. Chudoba: Biodegrability of organic substances in the aquatic environment, CRS Press, Boca Raton (1990).
  • [24] Quan Z., Jin Y., Yin C., Lee J.J., S. Lee: Hydrolyzed molasses as an external carbon source in biological nitrogen removal, Bioresource Technology, 96, 1690-1695 (2005).
  • [25] Standard Methods for the examination of water and wastewater, Edited by Greenberg, A.E., Clesceri, L.S., Eaton, A.D. (1992)
  • [26] Tsonis S.P.:Olive oil mill wastewater as carbon source in post anoxic denitrification, Water Science and Technology, 36, 53-60 (1997).
  • [27] Ueda T., Shinogi Y., M. Yamaoka: Biological nitrate removal using sugar-industry wastes, Paddy and Water Environment, 4, 139-144 (2006).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0002-0051
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.