PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mathematical modeling of heavy gas atmospheric dispersion over complex and obstructed terrain

Identyfikatory
Warianty tytułu
PL
Matematyczne modelowanie rozprzestrzeniania się w atmosferze gazów cięższych od powietrza w terenie o skomplikowanej topografii, w pobliżu budynków i przeszkód terenowych
Języki publikacji
EN
Abstrakty
EN
In this article the capabilities of mathematical heavy gas atmospheric dispersion models to describe the dispersion of heavy gases in complex and obstructed terrain are presented. The models have been categorized into three main classes: phenomenological (empirical) models, intermediate (engineering) models and computational fluid dynamic (research) models. Each group of models is discussed separately. The general features of the models are discussed briefly. Examples of the heavy gas atmospheric dispersion models capable to treat the influence of non-flat and obstructed terrain on the heavy gas dispersion result from the work carried out in the European Union and in the US. No model simulating the heavy gas atmospheric dispersion over complex or obstructed terrain has been yet developed in Poland. The need for future work on the effects of complex and obstructed terrain on the heavy gas atmospheric dispersion is expressed. Future research in the area should include both experimental and modeling work. In the context of this paper future modeling work is worth considering in more detail. It seems that all the approaches to describe the heavy gas atmospheric dispersion over complex and obstructed terrain are worth further attention. This opinion is supported by the fact that these approaches are used in different types of heavy gas dispersion models, which in turn differ in applications. The simpler methods are introduced to the simpler heavy gas atmospheric dispersion models applied mainly in the routine calculations. The advanced techniques capable to describe the flow near complicated geometries are used in the sophisticated models applied mainly as a research tools.
PL
W artykule przedstawiono możliwości uwzględnienia w modelach rozprzestrzeniania się w atmosferze gazów cięższych od powietrza opisu wpływu topografii, budynków i przeszkód terenowych na rozprzestrzenianie się gazów cięższych od powietrza. Modele podzielono na trzy grupy i wyróżniono: modele fenomenologiczne (empiryczne), modele pośrednie (inżynierskie) i modele obliczeniowej dynamiki płynów (badawcze). Każdą grupę modeli scharakteryzowano oddzielnie. Zasadnicze cechy modeli przedstawiono skrótowo. Przytoczone przykłady modeli rozprzestrzeniania się w atmosferze gazów cięższych od powietrza, uwzględniające wpływ topografii, budynków i przeszkód terenowych na przemieszczanie się gazów cięższych od powietrza, są rezultatem prac prowadzonych w krajach Unii Europejskiej i Stanach Zjednoczonych. W Polsce jak dotąd nie opracowano takiego modelu. W artykule zwrócono uwagę na konieczność prowadzenia dalszych prac nad wpływem topografii, budynków i przeszkód na rozprzestrzeniane się gazów cięższych od powietrza w atmosferze. Przyszłe badania winny uwzględniać zarówno prace pomiarowe jak i matematyczne modelowanie. W kontekście tej publikacji warto bardziej dokładnie rozważyć prace nad modelami. Wydaje się, że wszystkie podejścia stosowane przy opisie rozprzestrzeniania się gazów cięższych od powietrza w terenie o skomplikowanej topografii, w pobliżu budynków i przeszkód terenowych warte są dalszej uwagi. Opinię tę popiera fakt, że różne podejścia są stosowane w różnych rodzajach modeli gazów cięższych od powietrza, które z kolei mają różne zastosowania. Prostsze metody są wprowadzane do prostszych modeli gazów cięższych od powietrza stosowanych głównie w rutynowych obliczeniach. Zaawansowane techniki zdolne do opisu przepływu w pobliżu skomplikowanych geometrycznie obiektów są używane w wyrafinowanych modelach stosowanych głównie jako narzędzia badawcze.
Rocznik
Strony
81--94
Opis fizyczny
bibliogr. 58 poz.
Twórcy
  • Warsaw University of Technology, Environmental Engineering Faculty ul. Nowowiejska 20, 00-653 Warsaw, Poland, maria@is.pw.edu.pl
Bibliografia
  • [1] Bartzis J.G.: ANDREA-HF: a three dimensional finite volume code for vapour cloud dispersion in complex terrain, JRC Ispra Report EUR 13580 EN, EC Joint Research Centre, Ispra 1991.
  • [2] Brighton P.W.M.: Heavy gas dispersion from sources inside buildings or in their wakes, [in:] Proceedings of the IchemE North Western Branch Symposium on Refinement of estimates of the consequences of heavy toxic vapour releases, UMIST, Manchester 1986.
  • [3] Britter R.E., R.P. Cleaver, M.G. Cooper: Development of simple model for the dispersion of a denser then air vapour clouds over real terrain, MRSEG22 Report, British Gas plc, Research and Technology Midlands Research Station, Warf Lane, Solihill, West Midlands 1991.
  • [4] Britter R.E., J. McQuaid: Workbook on the dispersion of dense gases, HSE contract research Report No 17/1988, Health and Safety Directorate, Sheffield 1988.
  • [5] Britter R.E.: Experiments on some effects of obstacles on dense gas dispersion, SRD R407, UKAEA Safety and Reliability Directorate, Wigshaw Lane, Culcheth, Warrington 1989.
  • [6] Britter R.E.: The atmospheric dispersion of dense gases, [in:] Proceedings of the Summer School, International Centre for Theoretical Physics, Trieste 1994.
  • [7] Britter R.E.: Recent research on the dispersion of hazardous materials, University of Cambridge Report EC EUR 18198 EN, Directorate of Science, Brussels 1998.
  • [8] Brown T.C., R.T. Cederwall, S.T. Chan, D.L. Ermak, R.P. Koopman, K.C. Lamson, J.W. McLure, L.K. Morris: LNG Vapour barrier verification field trials, Falcon series data Report, Final Report number 1990 GRI-89/0138, 1987.
  • [9] Carissimo B., S.F. Jagger, N.C. Daish, A. Halford, S. Selma-Olsen, K. Riikonen, J.M. Perroux, J. Wurtz, J.G. Bartzis, N.J. Duijm, K. Ham, M. Schatzman, D.R. Hall: The SMEDIS Database and validation exercise, International Journal of Environment and Pollution, 16, 1-6 (2001).
  • [10] Cleaver R.P., M.G. Cooper, A.R. Halford: Further development of a model for dense gas dispersion over real terrain, Journal of Hazardous Materials, 40, 85-108 (1994).
  • [11] Daish N.C., R.E. Britter, P.F. Linden, S.F. Jagger, B. Carissimo: SMEDIS: Scientific model evaluation of dense gas dispersion model, International Journal of Environment and Pollution, 14, 39-51 (2000).
  • [12] Directory of atmospheric transport and diffusion consequence assessment models, U.S. Department of Commerce, National Oceanic and Atmospheric Administration, FCM-13-1999, Washington DC 1999.
  • [13] Duijm N.J. (ed): Research on the dispersion of two-phase flashing releases, FLADIS-Final Report, TNOME-report R95, TNO, Apeldoorn 1995.
  • [14] Duijm N.J.: Dispersion of dense gas and flashing releases, [in:] Materials from the Workshop on Modelling and mitigation the consequences of accidental releases of hazardous materials, New Orleans 1995.
  • [15] Flacher A.: Experimentelle Untersuchung der Ausbreitung einer Schwergaswolke auf geneigtem Grund, Diplom Thesis, Institut für Fluiddynamik, ETH Zürich, Zürich 1994.
  • [16] Fracknell J.E.: Parameters characterising dispersion in the near wake of buildings, Journal of Wind Engineering and Industrial Aerodynamics, 16, 97-118 (1984)
  • [17] Galkowski A.: A unified model for pollutant dispersion in atmosphere and for consequence assessment, [in:] Models and techniques for health and environmental hazard assessment and management, M.J. Borysiewicz (ed.), Institute of Atomic Energy, Otwock 2006.
  • [18] Hall D.J., R.A. Waters, G.W. Marsland, S.L. Upton, M.A. Emmott: Repeat variability in instantaneously releases heavy gas clouds - some wind tunnel model experiments, Report LR 804 (PA), Warren Spring Laboratory, Gunnels Wood Road, Stevenage, Hertfordshire 1990.
  • [19] Hall R.C. (ed.): Evaluation of model uncertainty (EMU) - CFD modelling of near-field atmospheric dispersion, Project EMU Final Report to the European Commission (Data CD also available with report), WS Atkins Doc No WSA/AM5017/R7, WS Atkins, Woocote Grove, Ashley Road, Epson, Surrey 1997.
  • [20] Hankin R.K.S.: Heavy gas dispersion over complex terrain, PhD thesis, Trinity College, Cambridge University, Cambridge 1997.
  • [21] Hankin R.K.S., R.E. Britter: TWODEE: the Health and Safety Laboratory's shallow layer model for heavy gas dispersion, Part I: Mathematical basis and physical assumptions, Part II: Model validation, Journal of Hazardous Materials, 66, 211-237 (1999).
  • [22] Hanna S.R., R.E. Britter, P. Franzese: The effects of roughness obstacles on the flow and dispersion at industrial and urban sites, AICHE/CCPS, 3 Park Avenue, New York 2002.
  • [23] Heinrich M., R. Scherwinsky: Research on propane releases under realistic conditions-determination of gas concentrations considering obstacles, TUV Final Project Report 123UI00780, TUV Norddeutchland, 1990.
  • [24] Idelchik I.E.: Handbook of Hydraulic Resistance, Hemisphere, Washington 1986.
  • [25] Kukkonen J., J. Nikimo: Modelling heavy gas cloud transport in sloping terrain, Journal of Hazardous Materials, 31, 155-176 (1992).
  • [26] Luketa-Hanlin A., R.P. Koopman, D.L. Ermak: On the application of computational fluid dynamics codes for liquefied natural gas dispersion, Journal of Hazardous Materials, 140, 504-517 (2007).
  • [27] Luong H.Y.: WEDGE validation report, WS Atkins Internal Report No. AM5109-R2, 1997.
  • [28] Markiewicz M.: Modelling of heavy gas dispersion in Poland, [in:] Environmental Engineering, L. Pawłowski, M. Dudzińska, A. Pawłowski (eds), Taylor and Francis, London 2007, pp. 341-348.
  • [29] Marotzke K.: Wind tunnel modelling of density current interaction on an inclined plan, [in:] Proceedings of the CEC project BA meeting, Meteorological Institute of Hamburg University, Lathen 1989.
  • [30] McQuaid J., B. Roebuck: Large scale field trials on dense vapour dispersion, Commission of EC report EUR 10029 EN, Brussels 1985.
  • [31] McQuaid J.: Heavy gas dispersion trials at Thorney Island, Journal of Hazardous Materials, 11, 21 (1985).
  • [32] Mercer A., C. Bartholome, B. Carissimo, N. Duijun, H. Giesbrecht: Heavy gas dispersion expert group final report, CEC Model Evaluation Group, Brussels 1996
  • [33] Nielsen M., N.O. Jensen: Research on continuous and instantaneous gas clouds, Journal of Hazardous Materials, 21, 101-104 (1989).
  • [34] Nielsen M.: Preliminary treatment of meteorological data from project BA dense gas experiments, Report Riso-M-2882, Riso National Laboratory, Roskilde 1990.
  • [35] Nielsen M., N.O. Jensen : Continuous releases, dense gas experiments with obstacles, Final report on Project BA.X2 Riso-M-2923, Riso National Laboratory, Roskilde 1991.
  • [36] Nielsen M., M. Heinrich, R. Scherwinsky: Research on continuous and instantaneous gas clouds Part II, Journal of Hazardous Materials, 26, 219-244 (1991)
  • [37] Nielsen M.: Dense gas dispersion in the atmosphere, PhD, Riso National Laboratory, Roskilde 1993.
  • [38] Nielsen M.: Comment on: A model of the motion of a heavy gas cloud released on a uniform slope, Journal of Hazardous Materials, 48, 251-258 (1996).
  • [39] Ott S., M. Nielsen: Shallow layer modelling of dense gas clouds, Riso-R-901 EN, Riso National Laboratory, Roskilde 1996.
  • [40] Riou Y.: Comparison between MERCURE GL: code calculations, wind tunnel measurements and Thorney Island field Trials, Journal of Hazardous Materials, 16, 247-265 (1987).
  • [41] Ross A.N., P.F. Linden, S.B. Danziel: A study of three-dimensional gravity currents on uniform slope, Journal of Fluid Mechanics, 453, 239-261 (2002).
  • [42] Scargiali F., E. Di Rienz, M. Ciofalo, F. Grisafi, A. Brucato: Heavy gas dispersion modelling over topographically complex mesoscale: a CFD approach, Process Safety Environmental Protection, 83 (B3), 242-256 (2005).
  • [43] Scaperdas A., C.R. Hebden: Source term modelling of releases within building complexes, Research report 064, WS Atkins Consultants Ltd, Woodcote Grove, Ashley Road, Epsom 2003.
  • [44] Schatzmann M., K. Marotzke, J. Donat: Research on continuous and instantaneous heavy gas clouds, EV report 91-026/r.24/HVG, University of Hamburg, Hamburg 1990.
  • [45] Schatzmann M., W.H. Snayder, R.E. Lawson Jr.: Building effects on heavy gas jet dispersion, [in:] Proceedings of International Conference and Workshop on Modelling and mitigating the consequences of accidental releases of hazardous materials, New Orleans 1995, pp. 359-378.
  • [46] Sklavounos S., F. Rigas: Validation of turbulence models in heavy gas dispersion over obstacles, Journal of Hazardous Materials, A108, 9-20 (2004).
  • [47] Speziale C.G., S. Sarkar, B. Gatski: Modelling the pressure strain correlation of turbulence: an invariant dynamical systems approach, Journal of Fluid Mechanics, 227, 245-272 (1991).
  • [48] Tickle G.A.: A model of the motion and dilution of a heavy gas cloud released on a uniform slope in calm conditions, Journal of Hazardous Materials, 49, 29-47 (1996).
  • [49] User's guide to TSCREEEN, A model for screening toxic air pollutant concentrations, EPA-450/B-94023, U.S. Environmental Protection Agency, Research Triangle Park, NC, 1994.
  • [50] VDI Guidelines 3783 Part II Environmental Meteorology, Dispersion of heavy gases, 1990.
  • [51] Venetsanos A.G., J.G. Bartzis, J. Wurtz, D.D. Papailiou: DISPLAY-2: a two-dimensional shallow layer model for dense gas dispersion including complex features, Journal of Hazardous Materials, A99, 111- 144 (2003).
  • [52] Vincent J.H.: Model experiments on the nature of air pollution transport near buildings, Atmospheric Environment, 11, 765-774 (1977).
  • [53] Vincent J.H.: Scalar transport in the near aerodynamic wakes of surface mounted cubes, Atmospheric Environment, 12, 1319-1322 (1987).
  • [54] Webber D.M., S.J. Jones, G.A. Tickle, T. Wren: A model of the dispersion dense gas cloud and the computer implementation DRIFT: Part I Near-instantaneous releases, HSE/SRD R586, Wigshaw Lane, Culcheth, Cheshire 1991.
  • [55] Webber D.M., S.J. Jones, G.A. Tickle, T. Wren: A model of dispersion dense gas cloud and the computer implementation DRIFT. Part II Steady continuous releases, HSE/SRD R587, Wigshaw Lane, Culcheth, Cheshire 1991.
  • [56] Webber D.M., S.J. Jones, D. Martin: A model of the motion of a heavy gas cloud released on a uniform slope, Journal of Hazardous Materials, 33, 101-122 (1993).
  • [57] Webber D.M, S.J. Jones, D. Martin: Modelling the effects of obstacles on the dispersion of hazardous materials, [in:] Proceedings of International Conference and Workshop on Modelling and mitigation the consequences of accidental releases of hazardous material, New Orleans 1995, pp. 379-403.
  • [58] Wurtz J.: A transient one dimensional shallow layer model for dispersion of denser than air gases in obstructed terrain under non-isothermal conditions, Report EUR 15343 EN, Joint Research Centre, Ispra 1993
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0002-0043
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.