PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

New challenges in air quality and climate modeling

Autorzy
Identyfikatory
Warianty tytułu
PL
Nowe wyzwania w modelowaniu jakości powietrza i klimatu
Języki publikacji
EN
Abstrakty
EN
At present, when high particulate matter (PM) concentrations in ambient air cause thousands of premature deaths in Europe and global climate change is becoming the most critical issue in environmental protection, the state-of-the-science air quality and climate models constitute an essential research as well as decision support tools. Recently the great progress has been achieved in this research area. The present paper presents the goals and tools for Air Quality (AQ) Modeling, and gives overview of current challenges, including the meteorological, chemistry and climate modeling. The main emphasis is given to the regulatory and the Eulerian grid models, the latter are currently operating as so called off-line or on-line modeling systems. The issues connected with model implementation and validation is presented as well. Finally, the conclusions are drawn and recommendations for further development and integration of AQ and climate modeling in Poland are presented.
PL
W obecnej chwili, gdy alarmująco wysokie stężenia pyłów w atmosferze powodują przedwczesną śmiertelność tysięcy mieszkańców Europy, a zmiany klimatu są największym wyzwaniem ochrony środowiska naszej planety, matematyczne modelowanie jakości powietrza i klimatu staje się niezbędnym narzędziem badawczym, jak również niezwykle potrzebnym narzędziem wspomagania polityki ochrony środowiska. W ostatnich latach osiągnięto wielki postęp w omawianej dziedzinie. W pracy przedstawiono zadania i cele modelowania jakości powietrza oraz podstawy modelowania deterministycznego. Ukazano rozwój modeli regulatoryjnych oraz numerycznych modeli Eulerowskich, które aktualnie przyjmują postać tzw. systemów modelowania (modeli trzeciej generacji), pracujących zarówno w trybie off-line jak i on-line. Zaprezentowano najnowsze rozwiązania stosowane w modelowaniu meteorologicznym, w modelowaniu przemian chemicznych oraz w regionalnych modelach klimatycznych, wskazując na rozwój modelowania na świecie, w Europie i w Polsce. Omówiono także kwestę implementacji modeli oraz ich weryfikacji. Pracę podsumowują wnioski i rekomendacje związane z koniecznością rozwoju i integracji modelowania jakości powietrza i klimatu w Polsce.
Rocznik
Strony
3--28
Opis fizyczny
bibliogr. 83 poz., tab.
Twórcy
  • Warsaw University of Technology, Faculty of Environmental Engineering, Environmental Protection and Management Division, Air Pollution Control Group ul. Nowowiejska 20, 00-653 Warszawa, Poland, Katarzyna.Juda-Rezler@is.pw.edu.pl
Bibliografia
  • [1] Abert K., K. Budziński, K. Juda-Rezler: Regional air pollution models for Poland, Ecological Engineering, 3, 225-244 (1994).
  • [2] Bartnicki J., J. Hrehoruk, A. Grzybowska, A. Mazur: Regional model for atmospheric transport of heavy metals over Poland, [in:] Proceedings of the 10th Air Clean World Congress, Espoo 1995, pp. 339-350.
  • [3] Boldo E., S. Medina, A. LeTertre, F. Hurley, H-G. Mucke, F. Ballester, I. Aguilera, D. Eilstein: APHEIS: Health impact assessment of long-term exposure to PM2.5 in 23 European cities, Environmental Epidemiology, 21, 449-458 (2006).
  • [4] Borrego C., A. Monteiro, J. Ferreira, A.I. Miranda, A.M. Costa, A.C. Carvalho, M. Lopes: Procedures for estimation of modeling uncertainty in air quality assessment, Environment International, 34, 613-620 (2008).
  • [5] Brandt J., J.H. Christensen, L.M. Frohn, F. Palmgren, R. Berkowicz, Z. Zlatev: Operational air pollution forecasts from European to local scale, Atmospheric Environment, 35 (Suppl. 1), S91-S98 (2001).
  • [6] Brook R.D., B. Franlin, W. Cascio, Y. Hong, G. Howard, M. Lipsett, R. Luepker, M. Mittleman, J. Samet, S.C.Smith, I. Tager: Air pollution and cardiovascular disease, Circulation, 109, 2655-2671 (2004).
  • [7] Brunekreef B., D.W. Dockery, M. Krzyzanowski: Epidemiologic studies on short-term effects of low levels of major ambient air pollution components, Environ. Health Perspect., 103 (Sup. 2), 3-13 (1995).
  • [8] Brunekreef B., S.T. Holgate: Air pollution and health, Lancet, 360, 1233-1242 (2002).
  • [9] Bubnova R., G. Hello, P. Bénard, J.-F. Geleyn: Integration of the fully elastic equations cast in the hydrostatic pressure terrain-following coordinate in the framework of the Arpege/Aladin NWP System, Mon. Wea. Rev., 123, 515-535 (1995).
  • [10] Byun D.W., J.K.S. Ching (Eds.): Science algorithms of the EPA models-3 community multi-scale air quality (CMAQ) modeling system, US EPA Report No. EPA/600/R-99/030, Office of Research and Development, Washington DC 1999.
  • [11] Caputo M., M. Gimenez, M. Schlamp: Intercomparison of atmospheric dispersion models, Atmospheric Environment, 37, 2435-2449 (2003).
  • [12] Carmichael G.R., T. Kitda, L.K. Peters: A second generation model for regional-scale transport/chemistry/deposition, Atmospheric Environment, 20, 173-188 (1986).
  • [13] Carmichael G.R., L.K. Peters, R.D. Saylor: The STEM-II regional scale acid deposition and photochemical oxidant model-1, An overview of model development and applications, Atmospheric Environment, 25, 2077-2090 (1991).
  • [14] Carter W.P.L.: Development of the SAPRC-07 chemical mechanism and updated ozone reactivity scales, Final Report to California Air Resources Board, Contract No. 03-318, Los Angeles 2008. Available at: < http://www.engr.ucr.edu/~carter/SAPRC>.
  • [15] Chang J.C., S.R. Hanna: Air quality model performance evaluation, Meteorology and Atmospheric Physics, 87, 167-196 (2004).
  • [16] Chang J.S., R.A. Brost, S.A. Isaksen, S. Madronich, P. Middleton, W.R. Stockwell, C.J. Walcek: A three dimensional Eulerian acid deposition model: physical concepts and formulation, J. Geoph. Research, 92, 14681-14700 (1987).
  • [17] Chróściel S., A. Jagusiewicz, W. Jaworski, J. Juda, M. Nowicki, A. Warchałowski: Wytyczne obliczania stanu zanieczyszczenia powietrza atmosferycznego, 2nd ed., Ministerstwo Administracji, Gospodarki Terenowej i Ochrony Środowiska, Warszawa 1981/1983.
  • [18] COST 728: Integrated systems of MetM and CTM: strategy, interfaces and module unification, COST 728 Action, WG2 overview. Available at: <http://cost728.dmi.dk>.
  • [19] Deque M.P., R.G. Marquet: Simulation of climate change over Europe using a global variable resolution general circulation model, Climate Dynamics, 14, 173-189 (1998).
  • [20] Dodge M.C.: Chemical oxidant mechanisms for air quality modeling: critical review, Atmospheric Environment, 34, 2103-2130 (2000).
  • [21] EEA: Air pollution in Europe 1990-2004, European Environment Agency, Report No 2/2007, European Environment Agency, Copenhagen 2007.
  • [22] Eliassen A.: A Review of long-range transport modeling, J. Applied Meteor., 19, 231-240 (1980).
  • [23] Eliassen A., O. Hov, I.S.A. Isaksen, J. Saltbones, F. Stordal: A Lagrangian long-range transport model with boundary-layer chemistry, J. Applied Meteor., 21, 1645-1661 (1982).
  • [24] EMEP: Lagrangian Acid Deposition Model: a technical description, [in:] Transboundary Acidifying Pollution in Europe, EMEP/MSC-W Report 1/1994, The Norwegian Meteorological Institute, Oslo 1994, Appendix A.
  • [25] EMEP: Transboundary acidification, eutrophication and ground level ozone in Europe, EMEP Status Report 2002, Oslo 2002.
  • [26] ENVIRON: User's Guide - Comprehensive Air-Quality Model with Extensions, Version 4.10s, ENVI-RON International Corporation, Novato, CA 2004, <http://www.camx.com>.
  • [27] Gates W.L., A. Henderson-Sellers, G.J. Boer, C.K. Folland, A. Kitoh, B.J. McAvaney, F. Semazzi, N. Smith, A.J. Weaver, Q.-C. Zeng: Climate Models - Evaluation, [in:] Climate Change 1995: The Science of Climate Change, Contribution of Working Group I to the Second Assessment Report of the IPCC, Cambridge University Press, Cambridge and New York 1996, pp. 228-284.
  • [28] Gery M.W., G.Z. Whitten, J.P. Killus, M.C. Dodge: A photochemical kinetics mechanism for urban and regional scale computer modeling, J. Geophys. Res., 94, 12925-12956 (1989).
  • [29] Gifford F.A.: Uses of routine meteorological observations for estimating atmospheric dispersion, Nuclear Safety, 2, 47-51 (1961).
  • [30] Giorgi F., L.O. Mearns: Introduction to special section: regional climate modeling revisited, J. Geophys. Res., 104, 6335-6352 (1999).
  • [31] Grell G.A., J. Dudhia, D.R. Stauffer: A description of the fifth generation Penn State/NCAR mesoscale model (MM5), Technical report, National Centre for Atmospheric Research, Boulder, Colorado 1995.
  • [32] Grell G.A., S.E. Peckham, R. Schmitz, S.A. McKeen, G. Frost, W.C. Skamarock, B. Eder: Fully coupled "online" chemistry within the WRF model, Atmospheric Environment, 39, 6957- 6975 (2005).
  • [33] Hoek G., B. Brunekreef, S. Goldbohm, P. Fischer, P.A. van den Brandt: The association between mortality and indicators of traffic-related air pollution in a Dutch cohort study, Lancet, 360, 1203-1209 (2002).
  • [34] Holmes N.S., L. Morawska: A review of dispersion modeling and its application to the dispersion of particles: An overview of different dispersion models available, Atmospheric Environment, 40, 5902-5928 (2006).
  • [35] Holnicki P., A. Kałuszko, A. Żochowski: A multilayer computer model for quality forecasting in urban/ regional scale, Control and Cybernetic, 22, 5-28 (1993).
  • [36] Holnicki P.: Air pollution transport models - application to environmental quality control, (in Polish), Akad. Publisher EXIT, Systems Research 46, Warszawa 2006.
  • [37] IPCC: Fourth Assessment Climate Change 2007: Impacts, Adaptation and Vulnerability, Assessment Report from Working Group II, Brussels, April 2007.
  • [38] Jacobson M.Z.: Comment on "fully coupled 'online' chemistry within the WRF model," by Grell et al., 2005, Atmospheric Environment 39, 6957-6975, Atmospheric Environment, 40, 4646-4648 (2006).
  • [39] Jimenez P., J.M. Baldasano, D. Dabdub: Comparison of photochemical mechanisms for air quality modeling, Atmospheric Environment, 37, 4179-4194 (2003).
  • [40] Juda J., K. Budziński: Zanieczyszczenia atmosfery, WNT, Warszawa 1961.
  • [41] Juda J., K. Budziński: Wytyczne obliczania stanu zanieczyszczenia powietrza atmosferycznego, Ministerstwo Administracji, Gospodarki Terenowej i Ochrony Środowiska, Warszawa 1968.
  • [42] Juda J., S. Chróściel, J. Jędrzejowski, M. Nowicki, J. Pruchnicki, Z. Grochowski, A. Radwańska, W. Jaworski, A. Radwańska, M. Skrzyńska, M. Szumanowska, M. Szymańska, W. Dzielińska: Podstawowe zasady obliczania rozprzestrzeniania się zanieczyszczeń atmosfery, Ministerstwo Administracji, Gospodarki Terenowej i Ochrony Środowiska, Warszawa 1976.
  • [43] Juda K.: Modeling of the air pollution in the Krakow area, Atmospheric Environment, 20, 2449-2558 (1986).
  • [44] Juda-Rezler K.: Air Pollution Modeling, [in:] The Encyclopedia of Environment Control Technology, Gulf Publishing Company, Houston 1989, pp. 83-134.
  • [45] Juda-Rezler K.: Modeling of the air pollution by sulphur species in Poland, Environmental Protection Engineering, 30, 53-71 (2004).
  • [46] Juda-Rezler K.: Integrated Assessment Modeling of Air Pollution on a Regional Scale, Environmental Protection Engineering, 32, 47-54 (2006).
  • [47] Juda-Rezler K.: The methodology of computing source-receptor air pollutant matrices for Integrated Assessment Models, [in:] Environmental Engineering, Taylor & Francis, London 2007, pp. 371-379
  • [48] Kamiński, J.W., D.A. Plummer, L. Neary, J.C. McConnell, J. Struzewska, L. Łobocki: First application of MC2-AQ to multiscale air quality modeling over Europe, Physics and Chemistry of the Earth, 27, 1517-1524 (2002).
  • [49] Kryza M., M. Błaś, A. Dore, M. Sobik: Fine-resolution modeling of concentration and deposition of nitrogen and sulphur compounds for Poland - application of the FRAME model, Archives of Environmental Protection, 36, 1, 49-62 (2010).
  • [50] Kuhn M., P.J.H. Builtjes, D. Poppe, D. Simpson, W.R. Stockwell, Y. Andersson-Skold, A. Baart, M. Das, F. Fiedler, O. Hov, F. Kirchner, P.A. Makar, J.B. Milford, M.G.M. Roemer, R. Ruhnke, A. Strand, B. Vogel, H. Vogel: Intercomparison of the gas-phase chemistry in several chemistry and transport models, Atmospheric Environment, 32, 693-709 (1998).
  • [51] Langman B.: Numerical modeling of regional scale transport and photochemistry directly together with meteorological processes, Atmospheric Environment, 34, 3585-3598 (2000).
  • [52] Łobocki L.: Application of Meteorological Models in Air Quality Modeling, [in:] MANHAZ Monograph: Models and Techniques for Health and Environmental Hazard Assessment and Management, Part 2 - Air Quality Modeling, Institute of Atomic Energy, Otwock-Świerk 2006, pp. 5-22.
  • [53] Madany A., M. Bartochowska: Przegląd polskich modeli rozprzestrzeniania się zanieczyszczeń atmosferycznych, Prace Naukowe Politechniki Warszawskiej, 19, 73-110 (1995).
  • [54] Madany A.: Problemy oceny i weryfikacji modeli rozprzestrzeniania się zanieczyszczeń w atmosferze, Prace Naukowe Politechniki Warszawskiej, 24, 30-42 (1998).
  • [55] Markiewicz M.: Gaussian air pollution dispersion model which takes into account the change of input parameters, Environmental Protection Engineering, 20, 123-141 (1994).
  • [56] Markiewicz M.: Podstawy modelowania rozprzestrzeniania się zanieczyszczeń w powietrzu atmosferycznym, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 2004.
  • [57] Markiewicz M.: Modeling of the Air Pollution Dispersion, [in:] MANHAZ Monograph: Models and Techniques for Health and Environmental Hazard Assessment and Management, Part 2 - Air Quality Modeling, Institute of Atomic Energy, Otwock-Świerk 2006, pp. 279-302.
  • [58] Markiewicz M.: Methods of determining meteorological data used in air pollution dispersion models, Environment Protection Engineering, 33, 75-86 (2007).
  • [59] McGuffie K., A. Henderson-Sellers: A Climate Modeling Primer, Wiley & Sons, Chichester 1997.
  • [60] Pasquill F.: The estimation of dispersion of wind-borne material, Meteorological Magazine, 90, 33-49 (1961).
  • [61] Peters L.K., C.M. Berkowitz, G.R. Carmichael: The current state and future direction of Eulerian models in simulating the tropospheric chemistry and transport of trace species: A review, Atmospheric Environment, 29, 189-222 (1995).
  • [62] Polish Environment Ministry: Regulation of the on the reference values of concentrations of some substances in ambient air, Dz. U. nr 1, poz. 12, Warsaw 2003 (in Polish).
  • [63] Pope C.A.: Respiratory disease associated with community air pollution and a steel mill, Utah Valley, American Journal of Public Health, 79, 623-628 (1989).
  • [64] Pope C.A., R.T. Burnett, M.J. Thun, E.E. Calle, D. Krewski, K. Ito, G.D. Thurston: Lung cancer, cardiopulmonary mortality and long-term exposure to fine particulate air pollution, Journal of American Medical Association, 287, 1132-1141 (2002).
  • [65] RegCM3 Homepage, [URL: http://users.ictp.it/~pubregcm/RegCM3].
  • [66] Reynolds S.D., J.H. Seinfeld, P.M. Roth: Mathematical modeling of photochemical air pollution - 1, Formulation of the model, Atmospheric Environment, 7, 1033-1061 (1973).
  • [67] Russell A., R. Dennis: NARSTO critical review of photochemical models and modeling, Atmospheric Environment, 34, 2283-2324 (2000).
  • [68] Seaman N.L.: Meteorological modeling for air quality assessments, Atmospheric Environment, 34, 2231-2259 (2000).
  • [69] Seigneur C., P. Pai, P.K. Hopke, D. Grosjean: Modeling atmospheric particulate matter, Environmental Science and Technology, 33, 80A-86A (1999).
  • [70] Stockwell W.R., F. Kirchner, M. Kuhn, S. Seefeld: A new mechanism for regional atmospheric chemistry modeling, Journal of Geophysical Research, 102, 25847-25879 (1997).
  • [71] Sutton O.G.: The problem of diffusion in the lower atmosphere, Quart. J. Roy. Met. Soc., 73, 257-276 (1947).
  • [72] Tesche T.W., R. Morris, G. Tonnesen, D. McNally, J. Boylan, P. Brewer: CMAQ/CAMx annual 2002 performance evaluation over the eastern US, Atmospheric Environment, 40, 4906-4919 (2006).
  • [73] Trapp W.: The application of CALMET/CALPUFF models in air quality assessment system in Poland, Archives of Environmental Protection, 36, 1, 63-79 (2010).
  • [74] Uliasz M.: The atmospheric mesoscale dispersion modeling system (MDMS), Journal of Applied Meteorology, 32, 139-149 (1993).
  • [75] Uliasz M., M. Bartochowska, A. Madany, H. Piwkowski, J. Parfiniewicz, M. Rozkrut: Application of the mesoscale dispersion modeling system to investigation of air pollution transport in southern Poland, [in:] Air Pollution Modeling and Its Application X (S.-E. Gryning, M. Millan, eds.), Plenum Press, New York 1993, pp. 15-22.
  • [76] US Environmental Protection Agency: Technology Transfer Network Support Center for Regulatory Atmospheric Modeling, Preferred/Recommended Models, AERMOD Modeling System [URL: http://www. epa.gov/scram001/dispersion_prefrec.htm# aermod].
  • [77] US Environmental Protection Agency: Technology Transfer Network Support Center for Regulatory Atmospheric Modeling, Preferred/Recommended Models, CALPUFF Modeling System [URL: http://www. epa.gov/scram001/dispersion_prefrec.htm #calpuff].
  • [78] Vardoulakis S., B.E.A. Fisher, K. Pericleous, N. Gonzales-Flesca: Modeling air quality in street canyons: a review, Atmospheric Environment, 37, 155-182 (2003).
  • [79] Venkatram A., P.K. Karamchandani, P.K. Misra: Testing a comprehensive acid deposition model, Atmospheric Environment, 22, 737-747 (1988).
  • [80] WHO: Air Quality Guidelines for Europe, Second Edition, WHO, Regional Office for Europe Regional Publications, European Series, No. 91, Copenhagen 2000.
  • [81] WHO: Health aspects of air pollution with particulate matter, ozone and nitrogen dioxide, Report on a WHO working group, WHO Regional Office for Europe, Copenhagen 2003.
  • [82] WHO: WHO air quality guidelines global update 2005, Report on a Working Group meeting, Bonn 2005.
  • [83] Willmott C.J.: Some comments on the evaluation of model performance, Bulletin of the American Meteorological Society, 63, 1309-1313 (1982).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0002-0038
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.