PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Kompleksy rutenu w terapii antynowotworowej

Identyfikatory
Warianty tytułu
EN
Ruthenium complexes in cancer therapy
Języki publikacji
PL
Abstrakty
EN
Chemotherapy is a major cancer treatment besides surgery and ratiotherapy. One of the most popular chemotherapeutic drugs that are currently in use are platinum compounds. Despite the success of cisplatin and other platinum-based anticancer compounds in cancer therapy [1, 2] there is still a need for new improved drugs with lower toxicity against healthy cells, better activity against tumor, less side effects, and without problems with drug resistance in primary and metastatic cancers [3, 4]. One of the most promising metals in the cancer treatment is ruthenium [6, 21,22]. Ruthenium complexes appear generally less toxic than platinum-based complexes and show activity in cisplatin-resistant cells or in cells where cisplatin is inactive. In spite of development of promising ruthenium(II) compounds, in particular organometallics [50, 51], only ruthenium(III) complexes like (H2Im)[trans-Ru(DMSO)Cl4(HIm)], (NAMI-A) [62] (Ryc. 7a) and (HInd)[Ru(III)Cl4(Ind)2], (KP1019) [23] (Ryc. 7b) gain the phase II of clinical trials. The complex NAMI-A showed marked efficacy against metastases whereas KP1019 was highly active against a colorectal tumor cells both in vivo and in vitro. Moreover the second compound is completely devoid of side effects and drug induced lethality at therapeutically relevant doses. Its therapeutic index is better than that of (HIm)[Ru(III)Cl4(Im)2]. The complex (HInd)[Ru(III)Cl4(Ind)2] has been shown to be efficiently taken up into the cells probably via interaction with transferrin. It induces apoptosis, but the cellular mechanisms of the apoptosis induction are still largely unknown [30]. Non-cross-resistance in cisplatin-resistant cancer cells and reduced toxicity, which is in part due to the ability of ruthenium complexes to mimic the binding of iron to molecules of biological significance, exploiting the mechanisms that the body has evolved for non-toxic transport of iron, is a particularly attractive feature of ruthenium complexes [16]. In addition, some chemical properties, such as rate of ligand exchange, range of accessible oxidation states, and ability of ruthenium to mimic iron in binding to certain biological molecules make these compounds well suited for medicinal applications as an alternative to platinum antitumor drugs in the treatment of cancer cells resistant to cisplatin and its analogues justifying further development of this novel and interesting group of metal complexes [30].
Rocznik
Strony
357--387
Opis fizyczny
bibliogr. 79 poz., schem.
Twórcy
autor
autor
  • Katedra i Zakład Chemii Nieorganicznej i Analitycznej, Wydział Farmaceutyczny Collegium Medicum w Bydgoszczy, UMK w Toruniu ul. Skłodowskiej-Curie 9, 85-094 Bydgoszcz, monika.richert@cm.umk.pl
Bibliografia
  • [1] J. Reedijk, Chem. Commun., 1996, 801.
  • [2] E. Wong, C.M. Giandomenico, Chem. Rev., 1999, 99, 2451.
  • [3] M.A. Jakupec, M. Galanski, B.K. Keppler, Rev. Physiol. Biochem. Pharmacol., 2003, 146, 1.
  • [4] M. Galanski, V.B. Arion, M.A. Jakupec, B.K. Keppler, Curr. Pharm. Des. 2003, 9, 2078.
  • [5] M. Ciołkowski, E. Budzisz, Wiad. Chem., 2007, 61, 43.
  • [6] M.J. Clarke, Coord. Chem. Rev., 2003, 236, 209.
  • [7] M. Miernicka, E. Budzisz, Wiad. Chem., 2007, 61, 937.
  • [8] M. Sobiesiak, E. Budzisz, Wiad. Chem., 2009, 63, 285.
  • [9] K. Strohfeldt, M. Tacke, Chem. Soc. Rev., 2008, 37, 1174.
  • [10] E. Budzisz, Pol. J. Cosmetol, 2006, 9(4), 212.
  • [11] L. Messori, G. Marcon, Met. Ions Biol. Syst., 2004, 42, 385.
  • [12] M. Ravela, G. Bagni, M. Mascini, D. Osella; Bioinorganic Chemistry and Application, 2007, 1.
  • [13] J.A. Hicman, Eur. J. Cancer, 1996, 32A, No 6, 921.
  • [14] A. Bielak-Żmijewska, Kosmos, Problemy nauk biologicznych, PTP im. Kopernika, 2003, Tom 52, Nr 2-3, 157.
  • [15] G. Krauss, Biochemistry of Signal Transduction and Regulation, WILEY-VCH Verlag GmbH & Co. KGaA, Third, Completely Revised Edition, Weinheim, 2003, 511-523.
  • [16] C.S. Allardyce, P.J. Dyson, Platinum Metals Rev., 2001, 45 (2), 62.
  • [17] B. Rosenberg, L. Van Camp, T. Krigas, Nature, 1965, 205, 698.
  • [18] B. Rosenberg, L. Van Camp, J.E., Trosko, V.H. Mansour, Nature, 1969, 222, 385.
  • [19] D. Wang, S.J. Lippard, Nat. Rev. Drug Discovery, 2005, 4, 307.
  • [20] A. Bonetti, R. Leone, F.M. Muggia, S.B. Howell, Platinum and Other Heavy Metal Compounds in Cancer Chemotherapy. Molecular Mechanisms and Clinical Applications, Humana Press, a part of Springer Science Business Media, LLC 2009, 57-66.
  • [21] M.J. Clarke, F. Zhu, D.R. Frasca, Chem. Rev., 1999, 99, 2511.
  • [22] W.H. Ang, P.J. Dyson, Eur. J. Inorg. Chem., 2006, 20, 4003.
  • [23] M.A. Jakupec, M. Galanski, V.B. Arion, Ch.G. Hartinger, B.K. Keppler, Dalton Trans., 2008, 183.
  • [24] C.S. Allardyce, P.J. Dyson, Platinum Metals Rev., 2001, 45, (2), 62.
  • [25] E. Reisner, V.B. Arion, B.K. Keppler, A.J.L. Pombeiro, Inorganica Chimica Acta, 2008, 361, 1569.
  • [26] Harper's Illustrated Biochemistry a twenty-sixth edition, pod redakcją R.K. Murray, D.K. Granner, P.A. Mayes, V.W. Rodwell, McGraw-Hill Companies, 2003, ISBN-0-07-121766-5 (International Edition), 584-587.
  • [27] A. Bergamo, S. Zorzet, B. Gava, A. Sorc, E. Alessio, E. Iengo, G. Sava, Anti-cancer Drugs, 2000, 11, 665.
  • [28] M. Pongratz, P. Schluga, M.A. Jakupec, V.B. Arion, Ch.G. Hartinger, G. Allmaier, B.K. Keppler, J. Anal. Atom. Spectrom., 2004, 19, 46.
  • [29] S. Kapitza, M. Pongratz, M.A. Jakupec, P. Heffeter, W. Berger, L. Lackinger, B.K. Keppler, B. Marian J. Cancer Res. Clin. Oncol., 2005, 131, 101.
  • [30] V. Brabec, O. Nováková, Drug Resistance Updates, 2006, 9, 111.
  • [31] S. Fruhauf, W.J. Zeller, Cancer Res., 1991, 51, 2943.
  • [32] E. Gallori, C. Vettori, E. Alessio, F.G. Vilchez., R. Vilaplana, P. Orioli, A. Casini, L. Messori, Arch. Biochem. Biophys., 2000, 376, 156.
  • [33] C.X., Zhang, S.J. Lippard, Curr. Opin. Chem. Biol., 2003, 7, 481.
  • [34] A.L Pinto, S.J. Lippard, Biochim. Biophys. Acta, 1985, 780, 167.
  • [35] W.C. Cole,W. Wolf, Chem. Biol. Interact., 1980, 30, 223.
  • [36] M.J. Clarke, B. Jansen, K.A. Marx, R. Kruger, Inorg. Chim. Acta 1986, 124, 13.
  • [37] M. McNamara, M.J. Clarke, Inorg. Chim. Acta, 1992, 195, 175.
  • [38] M. Zhao, M.J. Clarke, J. Biol. Inorg. Chem. 1999, 4, 318.
  • [39] M.J. Clarke, Z. Fuchun, D.R. Frasca, Chem. Rev., 1999, 99 (9), 2511.
  • [40] E. Alessio, Y. Xuu, S. Cauci, G. Mestroni, F. Quadrifoglio, P. Viglino, L.G. Marzilli, J. Am. Chem. Soc., 1989, 111, 7068.
  • [41] E. Alessio, E. Zangrando, R. Roppa, L. Marzilli, Inorg. Chem. 1998, 37, 2458.
  • [42] G. Esposito, S. Cauci, F. Fogolari, E. Alessio, M. Scocchi, F. Quadrifoglio, P. Viglino, Biochemistry, 1992, 31, 7094.
  • [43] N. Farrell, Y. Qu, Inorg. Chem. 1995, 34, 3573.
  • [44] B. Van Houten, S. Illenye, Y. Qu, N. Farrell, Biochemistry, 1993, 32, 11794.
  • [45] M. Milkevitch, B.W. Shirley, K.J. Brewer, Inorg. Chim. Acta, 1997, 264, 249.
  • [46] S.R. Vilaplana, M.G. Basallote, C. Ruiz-Valero, E. Gutierrez, F. Gonzalez-Vilchez, J. Chem. Soc., Chem. Commun., 1991, 100.
  • [47] R.A. Vilaplana, F. Gonzalez-Vilchez, C. Ruiz-Valero, Inorg. Chim. Acta 1994, 224, 15.
  • [48] R.E. Shepherd, Y. Chen, F.-T. Lin, Inorg. Chem., 1997, 36, 818.
  • [49] H. Chen, J.A. Parkinson, S. Parsons, A.R. Coxall, O. Gould, P.J. Sadler, J. Am. Chem. Soc,. 2002, 124, 3064.
  • [50] R.E. Morris, R.E. Aird, S. Pdel Murdoch, J. Med. Chem., 2001, 44, 3616.
  • [51] S.P. Fricker, Dalton Trans., 2007, 4903.
  • [52] F. Schmitt, P. Govindaswamy, G. Süss-Fink, W.H. Ang, P.J. Dyson, L. Juillerat-Jeanneret, B. Therrien, J. Med. Chem., 2008, 51, 1811.
  • [53] F. Schmitt, P. Govindaswamy, O. Zava, G. Süss-Fink, W.H. Ang, L. Juillerat-Jeanneret, B. Therrien, J. Biol. Inorg. Chem., 2009, 14, No. 1, 101.
  • [54] D.D. Dwyer, K. Gordon, B. Jones, Int. J. Immunopharmac., 1995, 17, No. 11, 931.
  • [55] C. Scolaro, J.T. Geldbach, S. Rochat, A. Dorcier, Ch. Gossens, A. Bergamo, M. Cocchietto, I. Tavernelli, G. Sava, U. Rothlisberger, P.J. Dyson, Organometallics, 2006, 25, 756.
  • [56] C. Scolaro, A.B. Chaplin, C.G. Hartinger, A. Bergamo, M. Cocchietto, B.K. Keppler, G. Sava, P.J. Dyson, Dalton Trans., 2007, 5065.
  • [57] C.G. Hartinger, W.H. Ang, A. Casini, L. Messori, B.K. Keppler, P.J. Dyson, J. Anal. At. Spectrom., 2007, 22, 960.
  • [58] A. Casini, G. Mastrobuoni, W.H. Ang, C. Gabbiani, G. Pieraccini, G. Moneti, P.J.Dyson, L. Messori, ChemMedChem., 2007, 2, 631.
  • [59] A. Dorcier, P.J. Dyson, C. Gossens, U. Rothlisberger, R. Scopelliti, I. Tavernelli, Organometallics, 2005, 24, 2114.
  • [60] A. Bergamo, A. Masi, P.J. Dyson, G. Sava, International Journal of Oncology, 2008, 33, 1281.
  • [61] R.A. Vilaplana, F. Delmani, C. Manteca, J. Torreblanca, J. Moreno, G. García-Herdugo, F. González-Vílchez, J. Inorg. Biochem., 2006, 100, 1834.
  • [62] A. Bergamo, G. Sava, Dalton Trans, 2007, 1267.
  • [63] G. Sava, E. Alessio, E. Bergamo, G. Mestroni, Top. Biol. Inorg. Chem., 1999, 1, 143.
  • [64] O.M.N. Dhubhghaill, W. Hagen, B.K. Keppler, K.-G Lipponer, J.J. Sadler, Chem. Soc., Dalton Trans., 1994, 3305.
  • [65] G. Mestroni, E. Alessio, G. Sava, S. Pacor, M. Coluccia, A. Boccarelli, Met.-Based Drugs, 1994, 1, 41.
  • [66] A. Bergamo, R. Gagliardi, V. Scarcia, A. Furlani, E. Alessio, G. Mestroni, G. Sava, J. Pharmacol. Exp. Ther., 1999, 289, 559.
  • [67] S. Geremia, E. Alessio, F. Todone, Inorg. Chim. Acta, 1996, 253, 87.
  • [68] M.J. Clarke, S. Bitler, D.J. Rennert, Inorg. Biochem., 1980, 12, 79.
  • [69] M. Bacac, A.C.G. Hotze, K. van der Schilden, J.G. Haasnoot, S. Pacor, E. Alessio, G. Sava, J. Reedijk, J Inorg Biochem 2004, 98, 402.
  • [70] P. Schluga, Ch.G. Hartinger, A. Egger, E. Reisner, M. Galanski, M.A. Jakupec, B.K. Keppler, A, Dalton Trans., 2006, 14, 1796.
  • [71] J. Chen, L. Chen, S. Liao, J. Phys. Chem. B, 2007, 111, 7862.
  • [72] A.V. Vargiu, A. Robertazzi, A. Magistrato, P. Ruggerone, P. Carloni, J. Phys. Chem B; 2008, 112, 4401.
  • [73] E. Meggers, Current Opinion in Chemical Biology, 2007, 11, 287.
  • [74] F.P. Dwyer, E.C. Gyarfas, W.P. Rogers, J.H. Koch, Nature, 1952, 170, 190.
  • [75] F.P. Dwyer, E.C. Gyarfas, R.D. Wright, A. Shulman, Nature 1957, 179, 425.
  • [76] H. Bregman, P.J. Carroll, E. Meggers, J. Am. Chem. Soc., 2006, 128, 877.
  • [77] G.E. Atilla-Gokcumen, N. Pagano, C. Streu, J. Maksimoska, P. Filippakopoulos, S. Knapp, E. Meggers, ChemBioChem., 2008, 9, No. 18, 2933.
  • [78] P.C.A. Bruijnincx, P.J. Sadler, Current Opinion in Chemical Biology, 2008, 12, 197.
  • [79] G.E. Atilla-Gokcumen, D.S. Williams, H. Bregman, N. Pagano, E. Meggers, ChemBioChem, 2006, 7, No 9, 1443.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0002-0030
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.