PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Architektury supramolekularne jako wynik samoorganizacji w kompleksach jonów metali d- i f- elektronowych

Autorzy
Identyfikatory
Warianty tytułu
EN
The supramolecular architectures as a result of self-assembly in complexes of d- and f-metal ions
Języki publikacji
PL
Abstrakty
EN
The use of transition metal complexes of bridging multidentate ligands to construct predictable, self-assembled small inorganic systems and multi-dimensional infinite networks is an area of chemistry which has received ever-increasing attention over the recent years. Self-organization occurs usually from a mixture of components (organic ligands, salt crystals, and sometimes solvent molecules). The products exhibit a notable thermodynamic and kinetic stability and their components should contain all the information necessary for a correct assembly to occur [1–6]. Self-assembly has recently been studied in many types of organic and inorganic systems. This latter approach has proven particularly successful for the generation of a wide spectrum of architectural topologies such as for example, helicates [7–11], rotaxanes [12, 13], clusters [14–16], ladders [17–19], cages [20–22], grids [23–25] and molecular wheels [26–28], etc., based on ligand design and an application of suitable coordination geometries for the assembling system. The structure of supramolecular complexes depends strongly on the ligand substituent, the ligand conformation, the metal ion, the counterion, the solvent, and the reaction conditions [29–37]. Such compounds may exhibit novel physical and chemical properties with a potential use in supramolecular engineering, nanotechnology, biomedical inorganic chemistry, biological catalysis, and in the area of sensors [38–46]. The review has been prepared on the results of my own studies in the field [47–59] and focused on structural diversity and characterization of supramolecular complexes. The architectures of these compounds generated by self-assembly of polypirydyl ligands with d-and f-metal ions are fascinating and attractive because of their unusual properties and prospective implementation in many application [60–74].
Rocznik
Strony
285--318
Opis fizyczny
bibliogr. 74 poz., schem.
Twórcy
autor
  • Wydział Chemii Uniwersytetu im. A. Mickiewicza, ul. Grunwaldzka 6, 60-780 Poznań, violapat@amu.edu.pl
Bibliografia
  • [1] J.-M. Lehn, Angew. Chem. Int. Ed. Eng., 1990, 29, 1304.
  • [2] J.S. Lindsey, New J. Chem., 1991, 15, 153.
  • [3] P. Molenveld, J.F.J. Engbersen, D.N. Reinhoudt, Chem. Soc. Rev., 2000, 29, 75.
  • [4] S. Leininger, B. Olenyuk, P.J. Stang, Chem. Rev., 2000, 100, 853.
  • [5] G.F. Swiegers, T.J. Malefetse, Chem. Rev., 2000, 100, 3483.
  • [6] L.M. Greig, D. Philp, Chem. Soc. Rev., 2001, 30, 287.
  • [7] M. Albrecht, Chem. Rev., 2001, 101, 3457.
  • [8] J.C.G. Bünzli, C. Piguet, Chem. Rev., 2002, 102, 1897.
  • [9] T.K. Ronson, H. Adams, T. Riis-Johannessen, J.C. Jeffery, M.D. Ward, New J. Chem. 2006, 30, 26.
  • [10] C. Piguet, M. Borkovec, J. Hamacek, K. Zeckert, Coord. Chem. Rev., 2005, 249, 705.
  • [11] M. Hutin, R. Frantz, J.R. Nitschke, Chem. Eur. J., 2006, 12, 4077.
  • [12] M. Hutin, C.A. Schalley, G. Bernardinelli, J.R. Nitschke, Chem. Eur. J., 2006, 12, 4069.
  • [13] J.P. Collin, V. Heitz, S. Bonnet, J.-P. Sauvage, Inorg. Chem. Commun., 2005, 8, 1063.
  • [14] F. Henke, C. Schenk, A. Schnepf, Dalton Trans., 2009, 9141.
  • [15] S. Yao, Z. Zhang, Y. Li, E. Wang, Inorg. Chem. Commun., 2009, 12, 937.
  • [16] Z.H. Dang, J. Zhao, L. Xu, Inorg. Chim. Acta, 2009, 362, 2999.
  • [17] M. Fujita, Y.J. Kwon, O. Sasaki, K. Yamaguchi, K. Ogura, J. Am. Chem. Soc. 1995, 117, 7287.
  • [18] R.L. Paul, S.M. Couchman, J.C. Jeffery, J.A. McCleverty, Z.R. Reeves, M.D. Ward, J. Chem. Soc., Dalton Trans., 2000, 845.
  • [19] A. Camara-Campos, C.A. Hunter, S. Tomas, PNAS 2006, 103, 3034.
  • [20] G.H. Clever, S. Tashiro, M. Shionoya, Angew. Chem. Int. Ed., 2009, 48, 7010.
  • [21] C. Desmarets, C. Policar, L.M. Chaamoreau, H. Amouri, Eur. J. Inorg. Chem., 2009, 4396.
  • [22] J.Y. Wu, Y.F. Lin, C.H. Chuang, T.W. Tseng, Y.S. Wen, K.L. Lu, Inorg. Chem., 2008, 47, 10349.
  • [23] L.K. Thompson, Coord. Chem. Rev., 2002, 233-234, 193.
  • [24] V. Patroniak, Wiad. Chem., 2004, 58, 59.
  • [25] M. Ruben, J. Rojo, F.J. Romero-Salguero, L.H. Uppadine, J.M. Lehn, Angew. Chem. Int. Ed. Eng., 2004, 43, 3644.
  • [26] A.M. Stadler, Eur. J. Inorg. Chem., 2009, 4751.
  • [27] O. Waldmann, Coord. Chem. Rev., 2005, 249, 2550.
  • [28] E.J.L. McInnes, S. Piligkos, G.A. Timco, R.E.P. Winpenny, Coord. Chem. Rev., 2005, 249, 2577.
  • [29] J.R. Nitschke, M. Hutin, G. Bernardinelli, Angew. Chem. Int. Ed. Engl., 2004, 43, 6724.
  • [30] P.N.W. Baxter, R.G. Khoury, J.M. Lehn, G. Baum, D. Fenske, Chem. Eur. J., 2000, 6, 4140.
  • [31] A.M. Stadler, N. Kyritsakas, R. Graff, J.M. Lehn, Chem. Eur. J., 2006, 12, 4503.
  • [32] C.S. Campos-Fernández, R. Clérac, K.R. Dunbar, Angew. Chem. Int. Ed. Eng., 1999, 38, 3477.
  • [33] V. Patroniak, M. Kubicki, A. Mondry, J. Lisowski, W. Radecka-Paryzek, Dalton Trans., 2004, 3295.
  • [34] W. Huang, W. You, L, Wang, C. Yao, Inorg Chim. Acta, 2009, 362, 2127.
  • [35] M. Ruben, J.M. Lehn, G. Vaughan, Chem. Commun., 2003, 1338.
  • [36] J. Hausmann, G.B. Jameson, S. Brooker, Chem. Commun., 2003, 2992.
  • [37] L.H. Uppadine, J.M. Lehn, Angew. Chem. Int. Ed. Engl., 2004, 43, 240.
  • [38] M. Fujita, Y.J. Kwon, S. Washizu, K. Ogura, J. Am. Chem. Soc. 1994, 116, 1151.
  • [39] O. Ohmori, M. Fujita, Chem. Commun., 2004, 1586.
  • [40] R.P. Bonar-Law, L.G. Mackay, J.K.M. Sanders, J. Chem. Soc., Chem. Commun., 1993, 456.
  • [41] J. Müller, B. Lippert, Angew. Chem. Int. Ed. Eng., 2006, 45, 2503.
  • [42] D. Parker, Coord. Chem. Rev., 2000, 205, 109.
  • [43] T. Gunnlaugsson, D.A. Mac Dónaill, D. Parker, J. Am. Chem. Soc., 2001, 123, 12866.
  • [44] M.H. Keefe, K.D. Benkstein, J.T. Hupp, Coord. Chem. Rev. 2000, 205, 201.
  • [45] R.C. Evans, P. Douglas, C.J. Winscom, Coord. Chem. Rev., 2006, 250, 2093.
  • [46] A.M. Nonat, A.J. Harte, K. Sénéchal-David, J.P. Leonard, T. Gunnlaugsson, Dalton Trans., 2009, 4703.
  • [47] V. Patroniak, A.R. Stefankiewicz, J.M. Lehn, M. Kubicki, Eur. J. Inorg. Chem., 2005, 4168.
  • [48] V. Patroniak, P.N.W. Baxter, J.M. Lehn, M. Kubicki, M. Nissinen, K. Rissanen, Eur. J. Inorg. Chem., 2003, 4001.
  • [49] V. Patroniak, J.M. Lehn, M. Kubicki, A. Ciesielski, M. Wałęsa, Polyhedron, 2006, 25, 2643.
  • [50] V. Patroniak, P.N.W. Baxter, J.M. Lehn, Z. Hnatejko, M. Kubicki, Eur. J. Inorg. Chem., 2004, 2379.
  • [51] V. Patroniak, A.R. Stefankiewicz, J.-M. Lehn, M. Kubicki, M. Hoffmann, Eur. J. Inorg. Chem., 2006, 144.
  • [52] A.R. Stefankiewicz, M. Wałęsa-Chorab, H.B. Szczeoeniak, V. Patroniak, M. Kubicki, Z. Hnatejko, J. Harrowfield, Polyhedron, 2010, 29, 178.
  • [53] V. Patroniak, M. Kubicki, A.R. Stefankiewicz, A.M. Grochowska, Tetrahedron, 2005, 61, 5475.
  • [54] V. Patroniak, Z. Hnatejko, A.M. Grochowska, A.R. Stefankiewicz, Spectrochim. Acta Part A., 2006, 64, 830.
  • [55] A. Ciesielski, M. Wałęsa, V. Patroniak, Pol. J. Chem., 2008, 82, 1231.
  • [56] A.R. Stefankiewicz, M. Wałęsa, P. Jankowski, A. Ciesielski, V. Patroniak, M. Kubicki, Z. Hnatejko, J.M. Harrowfield, J.M. Lehn, Eur. J. Inorg. Chem., 2008, 2910.
  • [57] M. Wałęsa-Chorab, V. Patroniak, G. Schroeder, R. Frański, Eur. J. Mass Spectr., 2010, 16, 163.
  • [58] A. Ciesielski, A. R. Stefankiewicz, M. Wałęsa-Chorab, V. Patroniak, M. Kubicki, Z. Hnatejko, J.M. Harrowfield, Supramol. Chem., 2009, 21, 48.
  • [59] A. Ciesielski, A.R. Stefankiewicz, V. Patroniak, M. Kubicki, J. Mol. Struct., 2009, 930, 110.
  • [60] P. Jutzi, U.J. Gilge, Organomet. Chem., 1983, 246, 163.
  • [61] G.V. Long, S.E. Boyd, M.M. Harding, I.E. Buys, T.W. Hambley, J. Chem. Soc. Dalton Trans., 1993, 3175.
  • [62] K. Burdeska, H. Fuhrer, G. Kabas, A.E. Siegriest, Helv. Chim. Acta, 1981, 64, 113.
  • [63] J.K. Stile, Angew. Chem. Int. Ed. Eng., 1986, 25, 508.
  • [64] J. Rojo, F.J. Romero-Salguero, J.M. Lehn, G. Baum, D. Fenske, Eur. J. Inorg. Chem., 1999, 1421.
  • [65] C.G. Pitt, Y. Bao, J. Thompson, M.C. Wani, H. Rosenkrantz, J. Metterville, J. Med. Chem. 1986, 29, 1231.
  • [66] N. Reddig, M.U. Triller, D. Pursche, A. Rompel, B. Krebs, Z. Anorg. All. Chem., 2002, 628, 2458.
  • [67] D.M. Epstein, S. Choudhary, M.R. Churchill, K.M. Keil, A.V. Eliseev, J. R. Morrow, Inorg. Chem., 2001, 40, 1591.
  • [68] J. Uenishi, T. Tanaka, S. Wakabayashi, S. Oae, T. Tsukube, Tetrahedron Lett., 1990, 31, 4625.
  • [69] M. Ruben, J.M. Lehn, P. Muller, Chem. Soc. Rev., 2006, 35, 1056.
  • [70] S.I. Stupp, Chem. Rev., 2005, 105, 1023.
  • [71] U. Ziener, J. Phys. Che. B, 2008, 112, 14698.
  • [72] S.K. Kim, D.H. Lee, J.I. Hong, J. Yoon, Acc. Chem. Res., 2009, 42, 23.
  • [73] J. Park, A.N. Pasupathy, J.I. Goldsmith, C. Chang, Y. Yaish, J.R. Petta, M. Rinkoski, J.P. Sethna, H.D. Abruńa, P.L. McEuen, D.C. Ralph, Nature, 2002, 417, 722.
  • [74] J. Frey, C. Tock, J.P. Collin, V. Heitz, J.P. Sauvage, K. Rissanen, J. Am. Chem. Soc., 2008, 130, 11013.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0002-0027
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.