PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Relacja pomiędzy wiązaniem wodorowym wspomaganym rezonansem a aromatycznością

Autorzy
Identyfikatory
Warianty tytułu
EN
Interplay between resonance-assisted hydrogen bond and aromaticity
Języki publikacji
PL
Abstrakty
EN
Among the so called non-covalent interactions the hydrogen bond (H-bond) is probably the most frequently and the most thoroughly investigated. This is due to the fact that H-bond plays an essential role in many physical, chemical and biochemical processes. The strongest H-bonds are those assisted with additional effects, as for instance the resonance assisted H-bonds (RAHBs). The concept of RAHB was first proposed by Gilli and co-workers in 1989, and with the time it has become one of the most thoroughly investigated aspects from the field of structural chemistry. Originally, the definition of RAHB was directly connected with the resonance effect acting in RAHB motif (either intra- or intermolecular). Many scientists were exploring the phenomena of the RAHB. Thus, some controversies appeared in connection with the extra stabilization of the RAHB if comparing with its "non-resonance-assisted" counterparts. Some authors criticized the original explanation introduced by Gilli et al. and proposed alternative mechanism responsible for the relatively stronger H-bonding in the RAHB motifs. Since the resonance effect accompanying the formation of H-bridge in RAHBs is in fact a π-electron effect, it may interact with other π -electron effects acting in specific molecules, e.g. with substituent effect or aromatic đ -electron delocalization. In this way the mutual interaction between different đ -electron effects may occur, which may influence many physical and chemical properties of molecular systems under consideration, as for instance the strength of RAHB, local aromaticity, proton transfer barrier and many others. In this paper a short review on the current state of knowledge on RAHB will be presented. The special attention will be paid onto the interrelation between RAHB and local aromaticity in derivatives of polycyclic aromatic hydrocarbons.
Rocznik
Strony
263--283
Opis fizyczny
Bibliogr. 83 poz., schem.
Twórcy
autor
  • Katedra Krystalografii i Krystalochemii, Wydział Chemii Uniwersytetu Łódzkiego, ul. Tamka 12, 91-403 Łódź,, marcinp@uni.lodz.pll
Bibliografia
  • [1] G.A. Jeffrey, An introduction to hydrogen bonding, Oxford University Press, Oxford, 1997.
  • [2] G.R. Desiraju, Crystal Engineering: The Design of Organic Solids, Elsevier, Amsterdam, 1989.
  • [3] G.R. Desiraju, Acc. Chem. Res., 2002, 35, 565.
  • [4] T. Steiner, Angew. Chem. Int. Ed. Eng., 2002, 41, 48.
  • [5] A.D. Buckingham, The Hydrogen Bond: An Electrostatic Interaction, [w:] Theoretical Treatments of Hydrogen Bonding, ed. D. Hadži, John Wiley & Sons, New York, 1997.
  • [6] P. Schuster, Energy surfaces for hydrogen bonded systems, [w:] The Hydrogen Bond, eds P. Schuster, G. Zundel, C. Sandorfy, North-Holland, Amsterdam, 1976.
  • [7] G. Gilli, P. Gilli The Nature of the Hydrogen Bond Outline of a Comprehensive Hydrogen Bond Theory, Oxford University Press, Oxford, 2009.
  • [8] L. Sobczyk, Wiad. Chem., 2001, 55, 593
  • [9] G.R. Desiraju, T. Steiner, The weak hydrogen bond in structural chemistry and biology, Oxford University Press/International Union of Crystallography, Oxford, 1999.
  • [10] S.J. Grabowski, J. Phys. Chem. A, 2001, 105, 10739.
  • [11] Y. Gu, T. Kar, S. Scheiner, J. Am. Chem. Soc., 1999, 121, 9411.
  • [12] W.G. Read, W.H. Flygare, J. Chem. Phys., 1982, 76, 2238.
  • [13] M.J. Frisch, J.A. Pople, J.E. Del Bene, J. Chem. Phys., 1983, 78, 4063.
  • [14] M. Nishio, Y. Umezawa, M. Hirota, Y. Takeuchi, Tetrahedron, 1995, 51, 8701.
  • [15] E.A. Meyer, R.K. Castellano, F. Diederich, Angew. Chem. Int., 2003, 42, 1210.
  • [16] M.P. Brown, R.W. Heseltine, Chem. Commun., 1968, 23, 1551.
  • [17] R.H. Crabtree, P.E.M. Siegbahn, O. Eisenstein, A.L. Rheingold, T.F. Koetzle, Acc. Chem. Res., 1996, 29, 348.
  • [18] S.J. Grabowski, Chem. Phys. Lett., 2000, 327, 203.
  • [19] S.J. Grabowski, Chem. Phys. Lett., 1999, 312, 542.
  • [20] F. Fuster, B. Silvi, S. Berski, Z. Latajka, J. Mol. Struct., 2000, 555, 75.
  • [21] G.V. Gibbs, A.F. Wallace, D.F. Cox, P.M. Dove, R.T. Downs, N.L. Ross, K.M. Rosso, J. Phys. Chem. A, 2009, 113, 736.
  • [22] K. WoŸniak, T.M. Krygowski, Long Range Consequences of H-Bonding, [w:] Organic Crystal Chemistry, eds T. Jones, J. Garbarczyk, Oxford University Press, Oxford, 1994.
  • [23] T.M. Krygowski, K. Woźniak. Wiad. Chem., 1992, 46, 43.
  • [24] G.A. Jeffrey, W. Saenger, Hydrogen Bonding in Biological Structures, Springer, Berlin, Heidelberg, 1991.
  • [25] S. Sheiner, Contribution of C-H...X hydrogen bonds to biomolecular structure, [w:] Hydrogen Bonding - New Insights, ed. S.J. Grabowski, Springer, Dordrecht, 2006.
  • [26] S.J. Grabowski, Monatshefte für Chemie, 2002, 133, 1373.
  • [27] M. Jabłoński, A.J. Sadlej, Polish J. Chem., 2007, 81, 767.
  • [28] M. Jabłoński, J. Mol. Struct. (Theochem), 2007, 820, 118.
  • [29] J. Jorly, D.J. Eluvathingal, J. Am. Chem. Soc., 2007, 129, 4620.
  • [30] L. Piela, Idee chemii kwantowej, Wydawnictwo Naukowe PWN, Warszawa, 2005.
  • [31] R.F.W. Bader, Atoms in Molecules. A Quantum Theory, Clarendon Press, Oxford, 1994.
  • [32] P. Popelier, Atoms in Molecules. An introduction, Prentice Hall, Harlow, 2000.
  • [33] G. Gilli, F. Belluci, V. Ferretti, V. Bertolasi, J. Am. Chem. Soc., 1989, 111, 1023.
  • [34] V. Bertolasi, P. Gilli, V. Ferretti, G. Gilli, J. Am. Chem. Soc., 1991, 113, 4917.
  • [35] P. Gilli, V. Bertolasi, V. Ferretti, G. Gilli, J. Am. Chem. Soc., 1994, 116, 909.
  • [36] P. Gilli, V. Bertolasi, V. Ferretti, G. Gilli, J. Am. Chem. Soc., 2000, 122, 10405.
  • [37] P. Gilli, V. Bertolasi, L. Pretto, A. Lyeka, G. Gilli, J. Am. Chem. Soc., 2002, 124, 13554.
  • [38] P. Gilli, V. Bertolasi, L. Pretto, V. Ferretti, G. Gilli, J. Am. Chem. Soc., 2004, 126, 3845.
  • [39] P. Gilli, V. Bertolasi, L. Pretto, L. Antonov, G. Gilli, J. Am. Chem. Soc., 2005, 127, 4943.
  • [40] L. Sobczyk, S.J. Grabowski, T.M. Krygowski, Chem. Rev., 2005, 105, 3513.
  • [41] M. Ramos, I. Alkorta, J. Elguero, Tetrahedron, 1997, 53, 1403.
  • [42] P. Sanz, O. Mó, M. Yáñez, J. Elguero, Chem. Phys. Chem., 2007, 8, 1950.
  • [43] P. Sanz, O. Mó, M. Yáñez, J. Elguero, J. Phys. Chem. A, 2007, 11, 3585.
  • [44] P. Sanz, O. Mó, M. Yáñez, J. Elguero, Chem. Eur. J., 2008, 14, 4225.
  • [45] (a) Chem. Rev., 2005, vol. 105, iss.10. (b) M.K. Cyrañski, T.M. Krygowski, Wiad. Chem., 2000, 54, 357.. (c) M.K. Cyrañski, T.M. Krygowski, Wiad. Chem., 2000, 54, 533.
  • [46] K. Jug, A. Koster, J. Am. Chem. Soc., 1990, 112, 6772.
  • [47] S. Shaik, A. Shurki, D. Danovich, P.C. Hiberty, J. Mol. Struct. (Theochem), 1997, 398-399, 155.
  • [48] R. Dobosz, R. Gawinecki, J. Mol. Struct. (Theochem), 2010, 940, 119.
  • [49] A. Filarowski, I. Majerz, J. Phys. Chem. A, 2008, 112, 3119.
  • [50] H. Houjou, T. Motoyama, S. Banno, I. Yoshikawa, K. Araki, J. Org. Chem., 2009, 74, 520.
  • [51] P. Lenain, M. Mandado, R.A. Mosquera, P. Bultinck, J. Phys. Chem. A, 2008, 112, 10689.
  • [52] M. Kluba, P. Lipkowski, A. Filarowski, Chem. Phys. Lett., 2008, 463, 426.
  • [53] A. Filarowski, A. Kochel, M. Kluba, F.S. Kamounah, J. Phys. Org. Chem., 2008, 21, 939.
  • [54] Y.H. Mariam, R.N. Musin, J. Phys. Chem. A, 2008, 112, 134.
  • [55] M. Palusiak, S. Simon, M. Sola, Chem. Phys., 2007, 342, 43.
  • [56] S.J. Grabowski, M. Palusiak, A.T. Dubis, A. Pfitzner, M. Zabel, J. Mol. Struct., 2007, 844-845, 173.
  • [57] M. Palusiak, T.M. Krygowski, Chem. Eur. J., 2007, 13, 7996.
  • [58] J.N. Woodford, J. Phys. Chem. A, 2007, 111, 8519.
  • [59] R. Gawinecki, A. Kuczek, E. Kolehmainen, B. Ooemia³owski, T.M. Krygowski, R. Kauppinen, J. Org. Chem., 2007, 72, 5598.
  • [60] S.J. Grabowski, J. Mol. Struct. (Theochem), 2007, 811, 61.
  • [61] S.E. Blanco, F.H. Ferretti, Tetrahedron Lett., 2007, 48, 2577.
  • [62] T.M. Krygowski, J.E. Zachara, B. Ośmiałowski, R. Gawinecki, J. Org. Chem., 2006, 71, 7678.
  • [63] M. Palusiak, S. Simon, M. Sola, J. Org. Chem., 2006, 71, 5241.
  • [64] A.J. Rybarczyk-Pirek, A.T. Dubis, S.J. Grabowski, J. Nawrot-Modranka, Chem. Phys., 2006, 320, 247.
  • [65] A.J. Rybarczyk-Pirek, S.J. Grabowski, M. Małecka, J. Nawrot-Modranka J. Phys. Chem. A, 2002, 106, 11956.
  • [66] T.M. Krygowski, J.E. Zachara-Horeglad, M. Palusiak, S. Pelloni, P. Lazzeretti, J. Org. Chem., 2008, 73, 2138.
  • [67] E. Clar, The Aromatic Sextet, Wiley, New York, 1972.
  • [68] J. Kruszewski, T. M. Krygowski, Tetrahedron Lett., 1972, 3839.
  • [69] T.M. Krygowski, J. Chem. Inf. Comput. Sci., 1993, 33, 70.
  • [70] P.v.R. Schleyer, C. Maerker, A. Dransfeld, H. Jiao, N.J.R. van Eikema Hommes, J. Am. Chem. Soc., 1996, 118, 6317.
  • [71] J. Poater, X. Fradera, M. Duran, M. Sola, Chem. Eur. J. 2003, 9, 400.
  • [72] E. Matito, M. Duran, M. Sola, J. Chem. Phys., 2005, 122, 14109; erratum J. Chem. Phys., 2006, 125, 059901.
  • [73] G. Portella, J. Poater, M. Sola, J. Phys. Org. Chem., 2005, 18, 785.
  • [74] G. Portella, J. Poater, J.M. Bofill, P. Alemany, M. Solà, J. Org. Chem., 2005, 70, 2509; erratum J. Org. Chem., 2005, 70, 4560.
  • [75] A.D. Becke, J. Chem. Phys., 1993, 98, 5648.
  • [76] C. Lee, W. Yang, R.G. Parr, Phys. Rev. B, 1988, 37, 785.
  • [77] P.J. Stephens, F.J. Devlin, C.F. Chabalowski, M.J. Frisch, J. Phys. Chem., 1994, 98, 11623.
  • [78] B. Miehlich, A. Savin, H. Stoll, H. Preuss, Chem. Phys. Lett., 1989, 157, 200.
  • [79] R. Krishnan, J.S. Binkley, R. Seeger, J.A. Pople, J. Chem. Phys., 1980, 72, 650.
  • [80] A.D. McLean, G.S. Chandler, J. Chem. Phys., 1980, 72, 5639.
  • [81] F. Feixas, E. Matito, M. Sola, J. Poater, J. Phys. Chem. A, 2008, 112, 13231.
  • [82] M. Palusiak, S. Simon, M. Sola, J. Org. Chem., 2009, 74, 2059.
  • [83] T.M. Krygowski, J.E. Zachara-Horeglad, Tetrahedron, 2009, 65, 2010.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0002-0026
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.