Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Properties and applications of sub- and supercritical water
Języki publikacji
Abstrakty
In the last decades, sub- and supercritical water has received continuously increasing attention as a reaction medium. As safe, non-toxic, readily accessible it is used in chemical synthesis, waste destruction and biomass processing [1–4]. A broad area of technological and industrial applications of sub- and supercritical water arises from its physical and transport properties falling between those of a gas and a liquid. The solvent properties of water can rapidly change with increasing pressure and temperature [2, 5, 10]. Above the critical point (Tc = 647.1 K, Pc = 22.06 MPa) water becomes highly compressible and diffusive. The static dielectric constant approaches values characteristic for low-polar solvent (Fig. 5). Contrary to liquid water at ambient conditions, supercritical water is a poor solvent for ionic species but is well miscible with hydrocarbons and gases (Fig. 6). The ionic product of supercritical water can be a few orders of magnitude higher than in ambient water (Fig. 4) with consequent effect on the kinetics and mechanisms of chemical reactions. By adjustment of thermodynamic conditions one can tune density, viscosity, polarity or pH of water to the desired solvation properties without any change in the chemical composition. An alternation in the character of water solvent near and above the critical point is the consequence of the structural transformations in the hydrogen-bonded network. As evidenced by many experimental and simulation studies the average number of hydrogen bonds per molecule and the lifetime of H-bonds decrease with increasing temperature and decreasing density [2, 10, 19]. With respect to experiment computer simulation plays an equal, and sometimes pivotal role, in quantitative characterization and understanding of water under extreme conditions. Precise definition of an H-bond employed in computer simulation allows one to examine size and topology of clusters of hydrogen-bonded molecules for various thermodynamic states [17, 19]. Such knowledge is invaluable to link features of the hydrogen bonding with the macroscopic properties of water [10, 19]. This article provides an overview of three aspects concerning water from ambient to supercritical conditions. In Chapter 1 the physical and transport properties are reviewed. Features of hydrogen bonding and a relationship between the molecular engagement in hydrogen-bonded clusters and macroscopic properties of water are discussed in Chapter 2. Chapter 3 focuses on technological and industrial applications of sub- and supercritical water. The summary concludes on main research needs.
Wydawca
Czasopismo
Rocznik
Tom
Strony
225--242
Opis fizyczny
bibliogr. 27 poz., wykr.
Twórcy
autor
- Międzyresortowy Instytut Techniki Radiacyjnej, Politechnika Łódzka, ul. Żeromskiego 116, 90-924 Łódź, swiatlad@p.lodz.pl
Bibliografia
- [1] P.E. Savage, J. Supercrit. Fluids, 2009, 47, 407
- [2] A. Kruse, E. Dinjus, J. Supercrit. Fluids, 2007, 39, 362.
- [3] R. Zarzycki (red.), Zaawansowane utlenianie w wodzie pod- i nadkrytycznej., Polska Akademia Nauk, Oddział w Łodzi, Komisja Ochrony Środowiska, Łódź 2002.
- [4] E.U. Franck, Supercritical Water and Other Fluids - A Historical Perspective, [w:] Supercritical Fluids. Fundamentals and Applications. NATO Science Series, Kluwer Academic Publishers, 2000, 366, ss. 307-319.
- [5] D.A. Palmer, R. Fernandez-Prini, A. H. Harvey (red.), Aqueous Systems at Elevated Temperatures and Pressures, Elsevier Academic 2004, ISBN: 0-12-544461-3.
- [6] W. Wagner, A. Pruss, J. Phys. Chem. Ref. Data, 2002, 31, 387.
- [7] W.L. Marshall, E.U. Franck, J. Phys. Chem. Ref. Data, 1981, 10, 295.
- [8] D.P. Fernandez, A.R.H. Goodwin, E.W. Lemmon, J.M. Levelt Sengers, R.C. Williams, J. Phys. B: At. Mol. Opt. Phys. 1997, 26, 1125.
- [9] R. Fernandez-Prini, J.L. Alvarez, A.H. Harvey, J. Phys. Chem. Ref. Data, 2003, 32, 903.
- [10] N. Akiya, P.E. Savage, Chem. Rev., 2002, 102, 2725.
- [11] Y. Maréchal, The Hydrogen Bond and the Water Molecule: The Physics and Chemistry of Water, Aqueous and Bio Media, Elsevier 2007, ISBN: 0-444-51957-2.
- [12] F. Mallamace, Proc. Natl. Acad. Sci, USA 2009, 106, 15097.
- [13] C. Huang, K.T. Wikfeldt, T. Tokushima, D. Nordlund, Y. Harada, U. Bergmann, M. Niebuhr, T.M. Weiss, Y. Horikawa, M. Leetmaa, M.P. Ljungberg, O. Takahashi, A. Lenz, L. Ojamae, A.P. Lyubartsev, S. Shin, L.G.M. Pettersson, A. Nilsson, Proc. Natl. Acad. Sci. USA, 2009, 106, 15214.
- [14] T. Head-Gordon, G. Hura, Chem. Rev., 2002, 102, 2651.
- [15] A.K. Soper , Chem. Phys., 2000, 258, 121.
- [16] G. Hura, J.M. Sorenson, J. Chem. Phys., 2000, 113, 9140.
- [17] D. Swiatla-Wojcik, Chem. Phys. 2007, 342, 260.
- [18] T.I. Mizan, P.E. Savage, R.M. Ziff, J. Supercrit. Fluids, 1997, 10, 119.
- [19] D. Swiatla-Wojcik, A. Pabis, J. Szala, Centr. Eur. J. Chem., 2008, 6, 555.
- [20] A.G. Kalinichev, Molecular Simulations of Liquid and Supercritical Water: Thermodynamics, Structure, and Hydrogen Bonding, [w:] Reviews in Mineralogy and Geochemistry, Mineralogical Society of America, Washington, D.C. 2001, 42, ss. 83-130, ISBN: 0-939950-54-5.
- [21] M.C. Bellissent-Funel, J. Mol. Liq., 2001, 90, 313.
- [22] N. Matubayasi, C. Wakai, M. Nakahara, J. Chem. Phys., 1997, 107, 9133.
- [23] T. Yamaguchi, J. Mol. Liq., 1998, 78, 43.
- [24] R.D. Mountain, J. Chem. Phys., 1999, 110, 2109.
- [25] E.E. Brock, P.E. Savage, AlChE J., 1995, 41, 1874.
- [26] D.L. Baulch, C.T. Bowman, C.J. Cobos, R.A. Cox, Th. Just, J.A. Kerr, M.J. Pilling, D. Stocker, J. Troe, W. Tsang, R.W. Walker, J. Warnatz, J. Phys. Chem. Ref. Data, 2005, 34, 757.
- [27] G.V. Buxton, High temperature water radiolysis, [w:] Studies in Physical and Theoretical Chemistry, Elsevier 2001, 87, ss. 145-162, ISBN: 0-444-82902-4.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0002-0024