PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Inicjujące materiały wybuchowe z grupy związków kompleksowych

Autorzy
Identyfikatory
Warianty tytułu
EN
Primary explosives from a group of coordination compounds
Języki publikacji
PL
Abstrakty
EN
For more than one hundred years, mercury fulminate (MF), lead azide (LA) and lead styphnate (LS) have been used as primary explosives (Fig. 1). They are very good initiatory explosives but they also suffer from serious drawbacks, such as: (a) extremely high sensitivity to mechanical stimuli, (b) thermal, hydrolytic, and chemical instability or lack of resistance to light, (c) incompatibility with metals commonly used in initiating devices, (d) high toxicity of the compounds themselves and their decomposition products [1, 2]. The ongoing search for new primary explosives is aimed at finding materials safer in production and use which do not contain heavy metals and exhibit better initiating performance than the multicomponent compositions being used now. The replacements of the present primaries should be more resistant to accidental stimuli (electrostatic discharge, impact, friction), but they must reliably inflame or detonate, e.g. upon exposure to flame, electrically heated wire or strike with a firing pin in stab and percussion initiators. However their thermal stability should not be too low in order to avoid unexpected explosions of ammunition exposed to heat flow from a fire. On the other hand some of the materials (detonants) must be capable of fast transition from deflagration to detonation. It is not easy to reconcile so many contradictory demands, but from the recently published papers, it appears that it may be possible [3–5]. It has been confirmed many times that some complex compounds with a general formula Mx(L)y(XO)z where M denotes a transition metal cation, L is a nitrogen rich ligand, and XO is an oxygen containing anion are effective primary explosives [3]. The cation plays structure-creating role (i.e. coordinates other molecules) providing stability of the compound and required level of safety. Usually it is also a catalyst of the first stage of decomposition which assures a rapid deflagration to detonation transition – inherent feature of primary explosives. In order to maximize the heat effect of decomposition, the oxygen balance of the compounds ought to be close to zero. Thanks to this the initiating performance of the new primaries may be higher than that of azides and flumintaes. In this work we present a review of papers devoted to synthesis, chemical composition, molecular structure and explosive properties of primary explosives from the group of coordination compounds. A lot of attention was paid especially to the explosives that have already been used in initiating devices and those with unique properties, e.g. highly sensitive to laser radiation. To systematize the review, the title compounds were divided into groups which distinguishing feature was the kind of ligand.
Rocznik
Strony
195--223
Opis fizyczny
bibliogr. 73 poz., schem., tab.
Twórcy
autor
autor
  • Wojskowa Akademia Techniczna, Wydział Nowych Technologii i Chemii, Instytut Chemii ul. gen. Sylwestra Kaliskiego 2, 00-908 Warszawa, scudzilo@wat.edu.pl
Bibliografia
  • [1] L.I. Bagal, Chemistry and Technology of Primary Explosives (in Russian), Moscow 1975.
  • [2] T. Urbański, Chemistry and Technology of Explosives, vol. 4, pp. 462-505, Pergamon Press, Oxford 1984.
  • [3] M.A. Ilushin, I.V. Tselinskii, A.M. Sudarikov, Development of Components of High Energetic Compositions, Saint-Petersburg 2006.
  • [4] D.M. Badgujar, M.B. Talawar, S.N. Asthana, P.P. Mahulikar, J. Hazard. Mater., 2008, 151, 289.
  • [5] M.B. Talawar, R. Sivbalan, T. Mukundan, H. Muthurajan, A.K. Sikder, B.R. Gandhe, A. Subhananda Rao, J. Hazard. Mater., 2009, 161, 589.
  • [6] D.E. Chavez, M.A. Hiskey D.L. Naud, Propellants, Expols., Pyrotech., 2004, 29, 209.
  • [7] G. Drake, T. Hawkins, A. Brand, L. Hall, M. Mckay, A. Vij, I. Ismail, Propellants, Expols., Pyrotech, 2003, 28, 174.
  • [8] V.A. Ostrovsky, M.S. Pevzner, M.S. Kofman, I.V.I.V. Tselinskii, Targets Heterocycl. Syst., 1999, 3, 467.
  • [9] V.P. Sinditskii, V.V. Serushkin, Def. Sci. J. 1996, 46, 371.
  • [10] M.L. Lieberman, J.W. Fronabarger, Status of the development of 2-(5-cyanotetrazolato)-pentaaminecobalt(III) perchlorate for DDT devices, Proc. 7th Int. Pyrotechnic Seminar, Colorado, 1980, 322.
  • [11] M.L. Lieberman, Ind. Eng. Chem. Prod. Res. Dev., 1985, 24, 436.
  • [12] J.W. Fronabarger, J.W. Fleming, M.L. Lieberman, Performance of chemical analogs of the explosive CP, Proc. 11th Symposium on Explosives and Pyrotechnics, Philadelphia, 1981, 38-1.
  • [13] M.A. Ilushin, I.V. Tselinskii, Russ. J. Chem., 2001, 45, 72.
  • [14] M.A. Ilushin, I.V. Tselinskii, A. Yu. Zhilin, Hanneng Cailiao (Energetic Materials) 2004, 12, 15.
  • [15] A.V. Smirnov, M.A. Ilushin, I.V. Tselinskii, Russ. J. Appl. Chem., 2004, 77, 794.
  • [16] L.R. Bates, The potential of tetrazoles in initiating explosive systems, Proc. 13th Symposium on Explosives and Pyrotechnics, Head Island, 1986, 3-1.
  • [17] J.W. Fronabarger, A. Schuman, R.D. Chapman, W. Fleming, W. B. Sanborn, Chemistry and development of BNCP - a novel DDT explosive, Proc. 31st AIAA-Joint Propulsion Conference, San Diego, 1995.
  • [18] J.W. Fronabarger, W.B. Sanborn, T. Massis, Recent activities in the development of the explosive BNCP, Proc. 22nd Int. Pyrotechnic Seminar, Chandler, 1996, 645.
  • [19] S.D. Lun, M.A. Feng, S.F. Long, L. Qiao-Liao, Hanneng Cailiao (Energetic Materials) 2000, 8, 100.
  • [20] M.A. Ilushin, I.V. Teslinskii, Russ. J. Chem., 2001, 45, 72.
  • [21] V.F. Zhilin, V.L. Zbarskii, Chem. Technol., 2001, 5, 6.
  • [22] P.E. Luebecke, P.M. Dickson, J.E. Field, Proc. Royal Society, 1995, 448, 439.
  • [23] A. Yu. Zhilin, M.A. Ilushin, I.V. Tselinskii, Russ. J. Appl. Chem., 2001, 74, 96.
  • [24] A. Yu. Zhilin, M.A. Ilushin, I.V. Tselinskii, Russ. J. Appl. Chem., 2003, 76, 592.
  • [25] M.B. Talawar, A.P. Agrawal, S.N. Asthana, J. Hazard. Mater., 2005, A120, 25.
  • [26] M.B. Talawar, J.S. Chhabra, A.P. Agrawal, S.N. Asthana, K.U.B. Rao, Haridwar Singh, J. Hazard. Mater., 2004, A113, 27.
  • [27] M.H.V. Huynh, M.A. Hiskey, T.J. Meyer, M. Wetzler, PNAS, 2006, 103, 5409.
  • [28] M.H.V. Huynh, M.D. Coburn, T.J. Meyer, M. Wetzler, PNAS 2006, 103, 10322.
  • [29] M.A. Hiskey, M.H.V. Huynh, Primary Explosives, Patent Application Publication US 2006/0030715 A1, Feb. 9, 2006.
  • [30] M.H.V. Huynh, Lead-free Primary Explosives, Patent Application Publication US 2008/0091029 A1, Apr. 17, 2008.
  • [31] M. Friedrich, J.C. Galvez-Ruiz, T.M. Klapotke, P. Meyer, B. Weber, J.J. Weigand, Inorg. Chem., 2005, 44, 8044.
  • [32] A. Yu. Zhilin, M.A. Ilushin, I.V. Tselinskii, Yu. A. Nikitina, A.S. Kozlov, I.V. Shugalei, Russ. J. Appl. Chem., 2005, 78, 188.
  • [33] M.A. Ilushin, I.V. Tselinskii, I.V. Bachurina, Yu. A. Gruzdev, V.P. Sinditskii, V.V. Serushkin, V. Yu. Egorshev, Central Eur. J. Energetic Mater. 2006, 3, 41.
  • [34] I.V. Bachurina, M.A. Ilushin, I.V. Tselinskii, Yu. A. Gruzdev, Russ. J. Appl. Chem., 2007, 80, 1643.
  • [35] M.A. Ilushin, I.V. Tselinskii, I.A. Ugrumov, A. Yu. Zhilin, A. S. Kozlov, Coordination complexes as inorganic primary explosives, Proc. 6th Seminar New Trends in Research of Energetic Materials, Pardubice, Czech Republic, 2003, 146.
  • [36] M.A. Ilushin, I.V. Tselinskii, Method of preparation of (5-hydrazinotetrazole)mercury(II) perchlorate, Russ. Patent RU 2225640 C2, 2004.
  • [37] I.A. Ugrumov, M.A. Ilushin, I.V. Tselinskii, A.S. Kolov, V. Yu. Dolmatov, I.V. Shugalei, A.N. Golovchak, Study of sub-micron structured photosensitive primary explosives for laser initiation systems, Proc. 7th Seminar New Trends in Research of Energetic Materials, Pardubice, Czech Republic, 2004, 307.
  • [38] D.B. Lempert, G.N. Nechiporienko, S.I. Soglasova, Chem. Physics, 2004, 23, 75.
  • [39] M.A. Ilushin, I.V. Tselinskii, Russ. J. Appl. Chem. 2000, 73, 1305.
  • [40] A.V. Chernai, V.V. Sobolev, V.A. Chernai, M.A. Ilushin, A. Dlugashek, Comb., Expl., Shock Waves 2003, 39, 335.
  • [41] J.G. Haasnoot, Coord. Chem. Rev., 2000, 200-202, 131.
  • [42] G.V. Romanenko, Z.A. Savelieva, N.V. Podberezeskaya, S.V. Larionov, J. Struct. Chem., 1997, 38, 171.
  • [43] L.G. Lavrenova, S.V. Larionov, S.A. Grankina, Izv. Sib. Otd. Akad. Nauk SSSR Ser. Khim., 1979, 5, 88.
  • [44] S. Cudziło, M. Nita, J. Hazard. Mater., 2009, doi: 10.1016/j.jhazmat.2009.12.008.
  • [45] V.P. Sinditskii, V.I. Sokol, A.E. Fogelzang, M.D. Lutov, V.V. Serushkin, M.A. Poray-Koshitz, B.C. Svietlov, Russ. J. Inorg. Chem., 1987, 32, 1950.
  • [46] A.E. Fogelzang, V.P. Sidnitskii, V. Y. Egorshev, V. V. Serushkin, Effect of structure of energetic materials on burning rate, Mat. Res. Soc. Symp. Proc., 1996, 418, 151.
  • [47] M. Nita, S. Cudziło, M. Celiński, Nowy inicjuj¹cy materiał wybuchowy - chloran(VII) m-4-amino- 1,2-4-triazol-m-dichloromiedŸ(II), Biul. WAT, 2010, 59, (w druku).
  • [48] I.A. Ugryumov, M.A. Ilushin, I.V. Tselinskii, A.S. Kozlov, Russ. J. Appl. Chem., 2003, 76, 439.
  • [49] S. Cudziło, R. Szmigielski, Biul. WAT, 2000, 49, 5.
  • [50] M.A. Ilushin, I.V. Tselinskii, The influence of the structure of the salts of azoles upon the process of their thermal and laser initiation, Proc. 8th Seminar New Trends in Research of Energetic Materials, Pardubice, Czech Republic, 2005, 213.
  • [51] M.A. Ilushin, I.V. Tselinskii, N.A. Petrova, Hanneng Cailiao (Energetic Materials) 1995, 3, 22.
  • [52] M.A. Ilushin, I.V. Tselinskii, N.A. Petrova, A.V. Chernai, Hanneng Cailiao (Energetic Materials), 1996, 4, 139.
  • [53] J.J. Liu, X. He, M. Shao, M.-X. Li, J. Mol. Struct., 2009, 919, 189.
  • [54] Z. Shunguan, W. Youchen, Z. Wenyi. M. Jingyan, Propellants, Expols., Pyrotech., 1997, 22, 317.
  • [55] J.S. Chhabra, M.B. Talawar, P.S. Makashir, S.N. Asthana, Haridwar Singh, J. Hazard. Mater., 2003, A99, 225.
  • [56] A. Wojewódka, J. Bełzowski, Z. Wilk, J. Staoe, J. Hazard. Mater., 2009, 171, 1175.
  • [57] Z. Liu, T. Zhang, J. Zhang, S. Wang, J. Hazard. Mater., 2008, 154, 832.
  • [58] Z. Shunguan, M. Peng, C. Shijin, L. Yan, Z. Li, Synthesis methods oh nickel hydrazine azide (NHA) and its characterization, Proc. 2009 Int. Autumn Sem. Propellants, Explos., Pyrotech., Kunming, China, 2009, 35.
  • [59] K.O. Groves, Nitroform-hydrazine coordination compounds, US Patent 3,140,317, 1964.
  • [60] R.L. Dutta, A.K. Sarkar, J. Inorg, Nucl. Chem., 1981, 43, 2557.
  • [61] M.G. Ivanov, I.I. Kalinichenko, M. Savitskiia, Koord. Khim, 1985, 11, 45.
  • [62] V.P. Sinditskii, A.E. Fogelzang, M.D. Dutov, V.I. Sokol, V.V. Serushkin, B.S. Svetlov, M.A. Poray-Koshitz, Russ. J. Inorg. Chem., 1987, 32, 1944.
  • [63] T.S. Konkova, Yu. N. Matushin, V. P. Sinditskii, Chem. Phys. Rep., 1995, 14, 865.
  • [64] M. Akiyoshi, H. Nakamura, Y. Hara, J. Jpn. Explos. Soc., 1996, 57, 238.
  • [65] V.V. Andreev, A.G. Hekludov, S.A. Pozdiakov, V.P. Sinditskii, A.E. Fogelzang, V.V. Serushkin, V. Yu. Egorshev, V.I. Kolesov, Primer detonator (variants), Patent RU 2 104 466 C1, 1998.
  • [66] M.B. Talawar, A.P. Agrawal, J.S. Chhabra, S.N. Asthana, J. Hazard. Mater., 2003, A113, 57.
  • [67] L. Chunhua, Z. Tonglai, C. Ruijiao, Synthesis, molecular structures and explosive properties of [M(CHZ)3](ClO4)2 (M = Cd, Ni, Mn), Proc. 1999 Int. Autumn Sem. Propellants, Explos., Pyrotech., Chengdu, China, 1999, 33.
  • [68] J. Zhang, T. Zhang, L. Yang, J. Zhang, Y. Cui, X. Hu, Z. Liu, Propellants, Explos., Pyrotech., 2009, 34, 24.
  • [69] Z. Tonglai, L. Chunhua, Z. Jianguo, Y. Kaibei, Propellants, Explos., Pyrotech., 2003, 28, 271.
  • [70] S. Cudziło, W. Trzciński, J. Energ. Mater., 2001, 19, 1.
  • [71] K.Y. Lee, L.B. Chapman, M.D. Coburn, J. Energ. Mater., 1987, 5, 27.
  • [72] L. Yang, J. Zhang, T. Zhang, J. Zhang, Y. Cui, J. Hazard. Mater., 2008, doi:10.1016/j.jhazmat. 2008.08.096.
  • [73] G. Singh, D.K. Pandey, J. Therm. Anal. Cal., 2004, 76, 507.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0002-0023
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.