Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Oznaczanie i modelowanie glinu w połączeniach z siarczanami w wodach powierzchniowych i frakcjonowanie glinu w osadach dennych
Języki publikacji
Abstrakty
The paper presents results of aluminium concentration determination in the samples of surface water and bottom sediments of the Mała Wełna River (West Poland). In the surface water the concentration of aluminium varies in the range from 4.14 to 25.9 μg/dm^3. With use of the Mineql+ program the concentration of the aluminium sulphate complexes in the water samples studied has been determined in a model way. In the bottom sediments samples of the river aluminium has been determined in the granulometric fractions of the grain sizes > 2.0; 2.0-1.0; 1.0-0.5; 0.5-0.25; 0.25-0.1; 0.1-0.063; < 0.063 mm, using the sequential extraction scheme proposed by Tessier et al. The lowest concentration of aluminium has been found in the granulometric fraction 0.5-0.25 mm, while the highest in the fractions 0.1-0.063 and < 0.063 mm. An elevated concentration of aluminium has been also noted in the fraction > 2.0 mm. Taking into regard the chemical fractions the lowest concentration of aluminium has been found in the exchange fraction and the fraction bounded to carbonates (fractions I and II), whereas the highest concentration of aluminium has been determined in the lithogenic fraction (fraction V). The methods of sample preparation for analysis of aluminium in bottom sediments were compared. It was observed that higher concentration of aluminium was present in grounded samples without its influence on grain size fractions. The concentration of aluminium in surface water samples has been determined by the GF-AAS, while in bottom sediments by F-AAS.
W pracy przedstawiono wyniki oznaczeń glinu w próbach wód powierzchniowych i osadach dennych rzeki Mała Wełna. W wodach powierzchniowych stwierdzono stężenie glinu w przedziale 4,14-25,9 μg/dm^3. Przy wykorzystaniu programu do modelowania Mineql+ wyliczono stężenie form kompleksów glinowo-siarczanowych w badanych próbkach wody. Frakcjonowanie glinu w osadach dennych przeprowadzono we frakcjach granulometrycznych o uziarnieniu: > 2,0; 2,0-1,0; 1,0-0,5; 0,5-0,25; 0,25-0,1; 0,1-0,063; < 0,063 mm, z wykorzystaniem zmodyfikowanego schematu ekstrakcji sekwencyjnej zaproponowanego przez Tessiera i współpracowników. Najniższe stężenia glinu występowały we frakcji granulometrycznej od 0,25-0,5 mm, natomiast najwyższe stężenia we frakcji 0,1-0,063 mm i < 0,063 mm. Zaobserwowano również wzrost stężenia glinu we frakcji granulometrycznej > 2,0 mm. W przypadku frakcji chemicznych najniższe stężenia glinu oznaczono we frakcji wymienialnej i związanej z węglanami (frakcja I i II), natomiast najwyższe stężenia glinu oznaczono we frakcji litogennej (frakcja V). Porównano metody przygotowania próbki do analizy glinu w osadach dennych. Stwierdzono wyższe stężenia glinu w próbkach poddanych rozcieraniu bez względu na wielkość frakcji granulometrycznej. Glin w wodach powierzchniowych oznaczono techniką absorpcyjnej spektrometrii atomowej z atomizacją w kuwecie grafitowej (GF-AAS), a w osadach dennych techniką absorpcyjnej spektrometrii atomowej z atomizacją w płomieniu (F-AAS).
Czasopismo
Rocznik
Tom
Strony
55--67
Opis fizyczny
bibliogr. 34 poz., tab., wykr.
Twórcy
autor
autor
autor
- Adam Mickiewicz University, Department of Water and Soil Analysis ul. Drzymały 24, 60-613 Poznań, Poland, marcin.frankowski@amu.edu.pl
Bibliografia
- [1] Baborowski M., O. Buttner, P. Morgenstern, F. Kruger, I. Lobe, H. Rupp, W. Tumpling: Spatial and temporal variability of sediment deposition on artificial-lawn traps in floodplain of the River Elbe, Environmental Pollution, 148, 770-778 (2007).
- [2] Berthon G.: Aluminium speciation in relation to aluminium bioavailability, matabolism and toxicity, Coordination Chemistry Reviews, 228, 319-341, (2002).
- [3] Bi S.P., X.D. Yang, F.P. Zhang, X.L. Wang, G.W. Zou: Analytical methodologies for aluminium speciation in environmental and biological review, Journal Analytical Chemistry, 370, 984-996 (2001).
- [4] Boudot J.P., D. Merlet, J. Rouiller, O. Maitat: Validation of an operational procedure for aluminium speciation in soil solutions and surface waters, The Science of the Total Environment, 158, 237-252 (1994).
- [5] Christophersen N., C. Neal, R.D. Vogt, J. Esser, S. Andersen: Aluminium mobilization in soil and streamwaters at three Norwegian catchments with differences in acid deposition and site characteristics, Sci. Tot. Env., 96, 175-188 (1990).
- [6] Deheyn D.D., M. Latz: Bioavailability of metals along a contamination gradient in San Diego Bay (California USA), Chemosphere, 63, 818-834 (2006).
- [7] Drabek O., L. Mladkowa, L. Boruvka, J. Szakowa, A. Nikodem: Comparison of water - soluble and exchangeable forms of Al in acid forest soils, Journal of Inorganic Biochemistry, 99, 1788-1795 (2005).
- [8] Driscoll C.T., K.M. Postek: The chemistry of aluminum in surface waters. The environmental chemistry of aluminium, 2nd edition, Garrison Sposito, 1996, 363-419.
- [9] Driscoll C.T., W.D. Schecher: The chemistry of aluminium in the environment, Environ. Geochem. Health, 12, 28-49 (1990).
- [10] Frankowski M., Zioła-Frankowska A., Kowalski A., Siepak J.: Fractionation of heavy metals in bottom seoliments Using Tessier procedure, Euviron. Earth Scio, DOJ 10. 1007/s12665-009-0258-3 (2009).
- [11] Frankowski M., M. Siepak, A. Zioła, K. Novotny, T. Vaculovič, J. Siepak: Vertical distribution of heavy metals in grain size fractions in sedimentary rocks: Mosina-Krajkowo water well field, Poland, Environmental Monitoring and Assesment, 155(1-4), 493-507 (2009).
- [12] Frankowski M., T. Sobczyński, A. Zioła: The Effect of Grain Size Structure on the Content of Heavy Metals in Alluvial Sediments of the Odra River, Polish Journal of Environmental Studies, 14 (supl. 5), 81-86 (2005).
- [13] Frankowski M., A. Zioła, M. Siepak: Analysis of heavy metals in particular granulometric fractions of bottom sediments in the Mała Wełna River (Poland), Polish Journal of Environmental Studies, 17(3), 343-350 (2008).
- [14] Guibaud G., C. Gauthier: Aluminium speciation in the Vienne river on its upstream catchment (Limousin region, France), Journal of Inorganic Biochemistry, 99, 1817-1821 (2005).
- [15] Guibaud G., C. Gauthier: Study of aluminium concentration and speciation of surface water in four catchments in the Limousin region (France), Journal of Inorganic Biochemistry, 97, 16-25 (2003).
- [16] Gworek B.: Toxicity of aluminium in environment, Ochrona Środowiska i Zasobów Naturalnych, 29, 27-38 (2006).
- [17] Kabata-Pendias A., H. Pendias: Biogeochemistry of trace elements, Polish Scientific Publishers PWN, Warsaw, 1999.
- [18] Kondracki J.: Regional geography of Poland, Polish Scientific Publishers PWN, Warsaw, 2000.
- [19] Kroglund F., B. Finstad: Low concentration of inorganic monomeric aluminium impair physiological status and marine survival of Atlantic salmon, Aquaculture, 222, 119-133 (2003).
- [20] Lawlor A.J., E. Tipping: Metal in bulk deposition and surface waters at two unpland nlocations in northern England, Environmental Pollution, 121, 153-167 (2003).
- [21] Matus P., J. Kubova: Complexation efficiency fixed 8-HQS and salicylic acid ligands groups for labile aluminium species determination in soils - comparison of two methods, Analytica Chimica Acta, 573574, 474-481 (2006).
- [22] Matus P., J. Kubova: Complexation of labile aluminium species by chelating resins Iontosorb - a new method for Al environmental risk assessment, Journal of Inorganic Biochemistry, 99, 1769-1778 (2005).
- [23] Ruszczyńska A., K. Pyrzyńska, E. Bulska: On the use of solid-phase extraction for the fractionation of aluminium species, Chem. Anal. (Warsaw), 49, 19-28 (2004).
- [24] Sin S.N., H. Chau, W. Lo, L.M. Ng: Assesment of heavy metal cations in sediments of Shing Mun River, Hong Kong, Environment International, 26, 297-301 (2001).
- [25] Sobczynski T., M. Szwak, A. Ziola, J. Siepak: Fractionation of aluminium from alluvial sediments, Environment Protection Engineering, 30(4), 177-182 (2004).
- [26] Sobczynski T., A. Pelechata, A. Ziola, M. Pelechaty, L. Burchardt, J. Siepak: Accumulation of aluminium in the freshwater ecosystem of Jaroslawieckie Lake, Polish Journal of Environmental Studies, 11, 172- 182 (2002).
- [27] Stutter M., R. Smart, M. Cresser, S. Langan: Catchment characteristics controlling the mobilization and potential toxicity of aluminum fraction in the catchment of the River Dee, northeast Scotland, The Science of Total Environment, 281, 121-139 (2001).
- [28] Sutherland R.A., F.M.G. Tack: Sequential Extraction of Lead from Grain Size Fractionated River Sediments Using the Optimized BCR Procedure, Water, Air, and Soil Pollution, 184(1-4), 269-284 (2007).
- [29] Sutherland R.A.: Lead in grain size fractions of road-deposited sediment, Environmental Pollution, 121(2), 229-237 (2003).
- [30] Tessier A., P.G. Campbell, M. Bisson: Sequential extraction procedure for the speciation of particulate trace metals, Analitycal Chemistry, 51(7), 844-851 (1979).
- [31] Wauer G., H.J. Heckemann, R. Koschel: Analysis of toxic aluminium species in natural waters, Microchimica Acta, 146, 149-154 (2004).
- [32] Zioła A., T. Sobczyński: The Effect of Water Ionic Composition on Liberation of Aluminium from Bottom Sediment, Polish Journal of Environmental Studies, 14 (supl. V), 101-104 (2005).
- [33] Zioła-Frankowska A., Frankowski M., J. Siepak: Development of a new analytical method for online simultaneous qualitative determination of aluminium (free aluminium ion, aluminium-fluoride complexes) by HPLC-FAAS, Talanta, 78, 623-630 (2009).
- [34] Zioła-Frankowska A., M. Frankowski, W. Szczuciński, J. Siepak: Analysis of labile aluminium form in grain size fractions of tsunami deposits in Thailand, Polish Journal of Environmental Studies, 18, 77-85 (2009).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0002-0005