PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The effect of multiple heavy metals on ascorbate, glutathione and related enzymes in two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza)

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, the effect of multiple heavy metal stress on ascorbate (AsA), glutathione (GSH) and related enzymes was investigated in the leaves, stems and roots of Kandelia candel and Bruguiera gymnorrhiza. Mangrove seedlings were treated with five different concentrations of a heavy metal mixture (Cd^2+, Pb^2+ and Hg^2+). Antioxidants in both the species were analyzed after one month. AsA, GSH, ascorbate peroxidase (APX, EC 1.11.1.11) and glutathione reductase (GR, EC 1.6.4.2) exhibited a similar trend with initial increase and subsequent decrease in response to heavy metal stress. At the highest metal concentration, a significant decrease of AsA and GR was observed in K. candel and B. gymnorrhiza. Glutathione peroxidase (GPX, EC 1.11.1.9) in the leaves, stems and roots of K. candel reached their respective maximal values at the highest metal concentration, whereas GPX activity in roots and stems of B. gymnorrhiza was similar to the controls at higher metal concentrations. Our results demonstrate that AsA, GSH, APX, GR and GPX in K. candel may play more important roles in defending against reactive oxygen species (ROS) than those in B. gymnorrhiza.
Rocznik
Strony
11--25
Opis fizyczny
bibliogr. 35 poz., wykr.
Twórcy
autor
autor
autor
autor
autor
  • Key Laboratory of Tropical Marine Environmental Dynamics South China Sea Institute of Oceanology, Chinese Academy of Sciences Guangzhou 510301, China, yswang@scsio.ac.cn
Bibliografia
  • 1.Aravind P., Prasad M.N.V., 2005, Modulation of cadmium-induced oxidative stress in Ceratophyllum demersum by zinc involves ascorbate-glutathione cycle and glutathione metabolism, Plant Physiol. Biochem., 43: 107-116
  • 2.Baccio D.D., Navari-Izzo F., Izzo R., 2004, Seawater irrigation: antioxidant defence responses in leaves and roots of a sunflower (Helianthus annuus L.) ecotype, J. Plant Physiol., 161: 1359-1366
  • 3.Boussama N., Ouariti O., Ghorbal M.H., 1999, Changes in growth and nitrogen assimilation in barley seedlings under cadmium stress, J. Plant Nutr., 22: 731-752
  • 4.Caregnato F.F., Koller G.R. et al., 2008, The glutathione antioxidant system as a biomarker suite for the assessment of heavy metal exposure and effect in the grey mangrove, Avicennia marina (Forsk.) Vierh., Mar. Pollut. Bull., 56: 1119-1127
  • 5.Choo K.S., Snoeijs P., Marianne Pedersén M., 2003, Oxidative stress tolerance in the filamentous green algae Cladophora glomerata and Enteromorpha ahlneriana, J. Exp. Mar. Biol. Ecol., 298: 111-123
  • 6.Cobbett C.S., 2000, Phytochelatin biosynthesis and function in heavy-metal detoxification. Curr. Opin. Plant. Bio., 3: 211-216
  • 7.Fatima R.A., Ahmad M., 2004, Certain antioxidant enzymes of Allium cepa as biomarkers for the detection of toxic heavy metals in wastewater. Sci. Total Environ., 346: 256-273
  • 8.Foyer C.H., Halliwell B., 1976, The presence of glutathione reductase in chloroplast: A proposed role in ascorbic acid metabolism, Planta, 133: 21-25
  • 9.Guo B., Liang Y.C., Zhu Y.G., Zhao F.J., 2007, Role of salicylic acid in alleviating oxidative damage in rice roots (Oryza sativa) subjected to cadmium stress, Environ. Pollut., 147: 743-749
  • 10.Iannelli M.A., Pietrini F., Fiore L., Petrilli L., Massacci A., 2002, Antioxidant response to cadmium in Phragmites australis plants, Plant Physiol. Biochem., 40: 977-982
  • 11.Israr M., Sahi S., Datta R., Sarkar D., 2006, Bioaccumulation and physiological effects of mercury in Sesbania drummondii, Chemosphere, 65: 591-598
  • 12.Knörzer O.C., Durner J., Böger P., 1996, Alterations of the antioxidative system of suspensioncultured soybean cells (Glycine max) induced by oxidative stress, Physiol. Plant., 97: 388-396
  • 13.Lin R.Z., Wang X.R., Luo Y., Du W.C., Guo H.Y., Yin D.Q., 2007, Effects of soil cadmium on growth, oxidative stress and antioxidant system in wheat seedlings (Triticum aestivum L.), Chemosphere, 69: 89-98
  • 14.Liu Y.G., Wang X., Zeng G.M., Qu D., Gu J.J. et al., 2007, Cadmium-induced oxidative stress and response of the ascorbate-glutathione cycle in Bechmeria nivea (L.), Chemosphere, 69: 99-107
  • 15.Lu H.L., Yan C.L., Liu J.C., 2007. Low-molecular-weight organic acids exuded by Mangrove (Kandelia candel (L.) Druce) roots and their effect on cadmium species change in the rhizosphere. Environ, Exp. Bot., 61: 159-166
  • 16.MacFarlane G.R., 2002. Leaf biochemical parameters in Avicennia marina (Forsk.) Vierh as potential biomarkers of heavy metal stress in estuarine ecosystems, Mar. Pollut. Bull., 44: 244-256
  • 17.Mendoza-Cózatl D.G., Moreno-Sánchez R., 2006, Control of glutathione and phytochelatin synthesis under cadmium stress. Pathway modeling for plants, J. Theor. Biol., 238: 919-936
  • 18.Mishra S., Srivastava S., Tripathi R.D., Kumar R., Seth C.S., Gupta D.K., 2006, Lead detoxification by coontail (Ceratophyllum demersum L.) involves induction of phytochelatins and antioxidant system in response to its accumulation, Chemosphere, 65: 1027-1039
  • 19.Nagalakshmi N., Prasad M.N.V., 2001, Responses of glutathione cycle enzymes and glutathionemetabolism to copper stress in Scenedesmus bijugatus, Plant Sci., 160: 291-299
  • 20.Nakano Y., Asada K., 1981, Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts, Plant Cell Physiol., 22: 867-880
  • 21.Noctor G., Foyer C.H., 1998, Ascorbate and glutathione: keeping active oxygen under control, Annu. Rev. Plant Physiol, Plant Mol. Biol., 49: 249-279
  • 22.Patra M., Sharma A., 2000, Mercury toxicity in plants, Bot. Rev., 66: 379-422
  • 23.Potters G., Gara L.D., Asard H., Horemans N., 2002, Ascorbate and glutathione: guardians of the cell cycle, partners in crime?, Plant Physiol. Biochem., 40: 537-548
  • 24.Pukacka S., Ratajczak E., 2006, Antioxidative response of ascorbate-glutathione pathway enzymes and metabolites to desiccation of recalcitrant Acer saccharinum seeds, J. Plant. Physiol., 163: 1259-1266
  • 25.Rai V., Vajpayee P., Singh S.N., Mehrotra S., 2004, Effect of chromium accumulation on photosynthetic pigments, oxidative stress defense system, nitrate reduction, proline level and eugenol content of Ocimum tenuiflorum L., Plant Sci., 167: 1159-1169
  • 26.Reddy A.M., Kumar S.G., Jyothsnakumari G., Thimmanaik S., Sudhakar C., 2005, Lead induced changes in antioxidant metabolism of horsegram (Macrotyloma uniflorum (Lam.) Verdc.) and bengalgram (Cicer arietinum L.), Chemosphere, 60: 97-104
  • 27.Shi H.M., Hu D.W., He Z.C., XU N.Y., 2001, A comparison of the activities of glutathione peroxidase in different types of cytoplasmic male sterile wheat, J. Wuhan Univ., 47: 771-774
  • 28.Singh S., Eapen S., D'Souza S.F., 2006, Cadmium accumulation and its influence on lipid peroxidation and antioxidative system in an aquatic plant, Bacopa monnieri L. Chemosphere, 62: 233-246
  • 29.Sinha S., Saxena R., 2006, Effect of iron on lipid peroxidation, and enzymatic and non-enzymatic antioxidants and bacoside-A content in medicinal plant Bacopa monnieri L. Chemosphere, 62: 1340-1350
  • 30.Smeets K., Cuypers A., Lambrechts A., Semane B., Hoet P. et al., 2005, Induction of oxidative stress and antioxidative mechanisms in Phaseolus vulgaris after Cd application, Plant Physiol. Biochem. 43, 437-444
  • 31.Tam N.F.Y., Wong Y.S., 1996, Retention and distribution of heavy metals in mangrove soils receiving wastewater, Environ. Pollut., 94: 283-291
  • 32.Tam N.F.Y., Wong Y.S., 1997, Accumulation and distribution of heavy metals in a simulated mangrove system treated with sewage, Hydrobiologia, 352: 67-75
  • 33.Tsuji N., Hirayanagi N., Iwabe O., Namba T., Tagawa M. et al., 2003, Regulation of phytochelatin synthesis by zinc and cadmium in marine green alga, Dunaliella tertiolecta. Phytochemistry, 62: 453-459
  • 34.Tsuji N., Hirayanagi N., Okada M., Miyasaka H., Hirata K. et al., 2002, Enhancement of tolerance to heavy metals and oxidative stress in Dunaliella tertiolecta by Zn-induced phytochelatin synthesis, Biochem. Bioph. Res. Co., 293: 653-659
  • 35.Yim M.W., Tam N.F.Y., 1999, Effects of wastewater-borne heavy metals on mangrove plants and soil microbial activitews, Mar. Pollut. Bull., 39: 179-186
  • 36.Zhang F.Q., Wang Y.S., Lou Z.P., Dong J.D., 2007, Effect of heavy metal stress on antioxidative enzymes and lipid peroxidation in leaves and roots of two mangrove plant seedlings (K.candel and B. gymnorrhiza), Chemosphere, 67: 44-45
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0001-0046
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.