PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Teoria chaosu w ujęciu matematycznym

Identyfikatory
Warianty tytułu
EN
Chaos Theory from the Mathematical Viewpoint
Języki publikacji
PL
Abstrakty
PL
Niniejsza praca stanowi próbę przedstawienia istniejących definicji chaosu dla dyskretnych układów dynamicznych. Dyskusję zawężono do zagadnień związanych z dynamiką topologiczną. Przedstawiono i umotywowano definicje: wrażliwości na warunki początkowe, chaosu w sensie Li i Yorke’a, Auslandera i Yorke’a, Devaneya, chaosu dystrybucyjnego, entropii topologicznej i podkowy topologicznej. Podzielono się pewnymi uwagami historycznymi. Omówiono znane związki między różnymi definicjami chaosu i przypomniano związane z nimi problemy otwarte.
EN
This work is intended as an attempt to survey existingde finitions of chaos for discrete dynamical systems. Discussion is restricted to the settingof topological dynamics, while the measure-theoretic (ergodic theory) and smooth (differentiable dynamical systems) aspects are omitted as exceedingt he scope of this paper. Chaos theory is understood here as a part of topological dynamics, so aforementioned definitions of chaos are just examples of particular dynamical system properties, and are considered inside the framework of the mathematical theory of discrete dynamical systems. It is not the purpose of this article to study chaos theory understood as a new kind of interdisciplinary branch of science devoted to nonlinear phenomena. As for prerequisites, the reader is expected to possess some mathematical maturity, and to be familiar with basic topology of (compact) metric spaces. No preliminary knowledge of the dynamical systems theory is required, however some is recommended. The first two section are devoted to general discussion of the term "chaos" and contains authors opinion on this subject. To facilitate access to the rest of the article some relevant material from the dynamical system theory is briefly repeated in the third section. The next section (Section 4) introduces the notion of topological transitivity along with some stronger variants, namely topological mixing and weak mixing. Section 5 gives a detailed account of the famous Sharkovskii's Theorem in its full generality. This is required for characterization of chaotic interval maps. Sections 6-13 are devoted to various notions of chaos or related to chaos in dynamical systems. Each section contains an attempt to motivate the notion, historical background and formal definition followed with a review of known properties, relations between various notions of chaos, and some relevant open problems. Section 6 is devoted to a sensitivity to initial conditions – a notion which is accepted as a basic indicator of chaotic behavior. Section 7 introduces a definition of chaos accordingt o Auslander and Yorke. Section 8 examines the notion of Li-Yorke pair and Li-Yorke chaos. Section 9 deals with the definition of chaos introduced in Devaney's book (Devaney chaos). Section 10 recalls some facts connected with symbolic dynamics, which provides a rich source of examples for various interestingb ehavior, and it is an indispensable tool for exploration of many systems. Section 11 describes the so-called "topological horseshoes", which are generalizations of the famous example due to Smale. The existence of a horseshoe in a given dynamical system proves the existence of a subsystem with a dynamics similar to some symbolic dynamical system, hence with a very complicated beTeoria chaosu w ujęciu matematycznym 45 havior. Section 12 gives a brief exposition of the topological entropy and its relation to chaos. The review of various notions of chaos ends with section 13, containingd escription of distributional chaos.
Rocznik
Tom
Strony
1--45
Opis fizyczny
bibliogr.133 poz. wykr.
Twórcy
autor
autor
Bibliografia
  • [AAB96] Akin, E. and Auslander, J. and Berg, K., When is a transitive map chaotic?, Convergence in ergodic theory and probability (Columbus, OH, 1993), Ohio State Univ. Math. Res. Inst. Publ., vol. 5, de Gruyter, Berlin, 1996, pp. 25-40.
  • [AdRR99] Alsedà, Ll., del Rio, M. A. and Rodriguez, J. A., A splitting theorem for transitive maps, J. Math. Anal. Appl. 232 (1999), no. 2, 359-375.
  • [AH94] Aoki, N. and Hiraide, K., Topological theory of dynamical systems, North- Holland Mathematical Library, vol. 52, North-Holland Publishing Co., Amsterdam, 1994, Recent advances.
  • [AK03] Akin, E. and Kolyada, S., Li-Yorke sensitivity, Nonlinearity 16 (2003), no. 4, 1421-1433.
  • [Aki04] Akin, E., Lectures on Cantor and Mycielski sets for dynamical systems, Chapel Hill Ergodic Theory Workshops, Contemp. Math., vol. 356, Amer. Math. Soc., Providence, RI, 2004, pp. 21-79.
  • [AKLS99] Alsedà, Ll. and Kolyada, S. and Llibre, J. and Snoha, L'., Entropy and periodic points for transitive maps, Trans. Amer. Math. Soc. 351 (1999), no. 4, 1551-1573.
  • [AKM65] Adler, R. L. and Konheim, A. G. and McAndrew, M. H., Topological entropy, Trans. Amer. Math. Soc. 114 (1965), 309-319.
  • [ALM00] Alsedà, L. and Llibre, J. and Misiurewicz, M., Combinatorial dynamics and entropy in dimension one, second ed., Advanced Series in Nonlinear Dynamics, vol. 5, World Scientific Publishing Co. Inc., River Edge, NJ, 2000.
  • [Aus88] Auslander, J., Minimal flows and their extensions, North-Holland Mathematics Studies, vol. 153, North-Holland PublishingCo., Amsterdam, 1988.
  • [AY80] Auslander, J. and Yorke, J. A., Interval maps, factors of maps, and chaos, Tôhoku Math. J. 32 (1980), no. 2, 177-188.
  • [Ban97] Banks, J., Regular periodic decompositions for topologically transitive maps, Ergodic Theory Dynam. Systems 17 (1997), no. 3, 505-529.
  • [Ban99] -, Topological mapping properties defined by digraphs, Discrete Contin. Dynam. Systems 5 (1999), no. 1, 83-92.
  • [BBC+92] Banks, J. and Brooks, J. and Cairns, G. and Davis, G. and Stacey, P., On Devaney's definition of chaos, Amer. Math. Monthly 99 (1992), no. 4, 332-334.
  • [BC86] Block, L. S. and Coppel, W. A., Stratification of continuous maps of an interval, Trans. Amer. Math. Soc. 297 (1986), no. 2, 587-604.
  • [BC92] -, Dynamics in one dimension, Lecture Notes in Mathematics, vol. 1513, Springer-Verlag, Berlin, 1992.
  • [BDJ03] Banks, J. and Dragan, V. and Jones, A., Chaos: a mathematical introduction, Australian Mathematical Society Lecture Series, vol. 18, Cambridge University Press, Cambridge, 2003.
  • [BDM04] Blanchard, F. and Durand, F. and Maass, A., Constant-length substitutions and countable scrambled sets, Nonlinearity 17 (2004), no. 3, 817-833.
  • [BGKM02] Blanchard, F. and Glasner, E. and Kolyada, S. and Maass, A., On Li-Yorke pairs, J. Reine Angew. Math. 547 (2002), 51-68.
  • [BGMY80] Block, L. and Guckenheimer, J. and Misiurewicz, M. and Young, L. S., Periodic points and topological entropy of one-dimensional maps, Global theory of dynamical systems (Proc. Internat. Conf., Northwestern Univ., Evanston, Ill., 1979), Lecture Notes in Math., vol. 819, Springer, Berlin, 1980, pp. 18-34.
  • [BH87] Bruckner, A. M. and Hu, T., On scrambled sets for chaotic functions, Trans. Amer. Math. Soc. 301 (1987), no. 1, 289-297.
  • [BH08] Blanchard, F. and Huang, W., Entropy sets, weakly mixing sets and entropy capacity, Discrete Contin. Dyn. Syst. 20 (2008), no. 2, 275-311.
  • [BHM00] Blanchard, F. and Host, B. and Maass, A., Topological complexity, Erg odic Theory Dynam. Systems 20 (2000), no. 3, 641-662.
  • [BHS08] Blanchard, F. and Huang, W. and Snoha, L., Topological size of scrambled sets, Colloq. Math. 110 (2008), no. 2, 293-361.
  • [Bla] Blanchard, F., Topological chaos: What may this mean?, preprint.
  • [Bla92] -, Fully positive topological entropy and topological mixing, Symbolic dynamics and its applications (New Haven, CT, 1991), Contemp. Math., vol. 135, Amer. Math. Soc., Providence, RI, 1992, pp. 95-105.
  • [Blo78] Block, L., Homoclinic points of mappings of the interval, Proc. Amer. Math. Soc. 72 (1978), no. 3, 576-580.
  • [Blo82] Blokh, A. M., Sensitive mappings of an interval, UspekhiMat. Nauk 37 (1982), no. 2(224), 189-190.
  • [Blo87] -, The connection between entropy and transitivity for one-dimensional mappings, Uspekhi Mat. Nauk 42 (1987), no. 5(257), 209-210.
  • [Bow70] Bowen, R., Topological entropy and axiom A, Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), Amer. Math. Soc., Providence, R.I., 1970, pp. 23-41.
  • [Bow71] -, Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc. 153 (1971), 401-414.
  • [BRS03] Balibrea, F. and Reich, L. and Smìtal, J., Iteration theory: dynamical systems and functional equations, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 13 (2003), no. 7, 1627-1647.
  • [BS03] Balibrea, F. and Snoha, L., Topological entropy of Devaney chaotic maps, Topology Appl. 133 (2003), no. 3, 225-239.
  • [BSŠ05] Balibrea, F. and Smìtal, J. and Štefànkovà, M., The three versions of distributional chaos, Chaos Solitons Fractals 23 (2005), no. 5, 1581-1583.
  • [BSSS03] Balibrea, F. and Schweizer, B. and Sklar, A. and Smìtal, J., Generalized specification property and distributional chaos, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 13 (2003), no. 7, 1683-1694.
  • [BT03] Blokh, A. M. and Teoh, E., How little is little enough?, Discrete Contin. Dyn. Syst. 9 (2003), no. 4, 969-978.
  • [CN08] Coven, E. M. and Nitecki, Z. H., On the genesis of symbolic dynamics as we know it, Colloq. Math. 110 (2008), no. 2, 227-242.
  • [Dev86] Devaney, R. L., An introduction to chaotic dynamical systems, The Benjamin/ Cummings Publishing Co. Inc., Menlo Park, CA, 1986.
  • [DGS76] Denker, M. and Grillenberger, C. and Sigmund, K., Ergodic theory on compact spaces, Springer-Verlag, Berlin, 1976, Lecture Notes in Mathematics, Vol. 527.
  • [Din70] Dinaburg, E. I., A correlation between topological entropy and metric entropy, Dokl. Akad. Nauk SSSR 190 (1970), 19-22.
  • [Din71] -, A connection between various entropy characterizations of dynamical systems, Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971), 324-366.
  • [dMvS93] de Melo, W. and van Strien, S., One-dimensional dynamics, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 25, Springer-Verlag, Berlin, 1993.
  • [Dow05] Downarowicz, T., Survey of odometers and Toeplitz flows, Algebraic and topological dynamics, Contemp. Math., vol. 385, Amer. Math. Soc., Providence, RI, 2005, pp. 7-37.
  • [Du04] Du, B.-S., A simple proof of Sharkovsky's theorem, Amer. Math. Monthly 111 (2004), no. 7, 595-599.
  • [Du07] -, A simple proof of Sharkovsky's theorem revisited, Amer. Math. Monthly 114 (2007), no. 2, 152-155.
  • [FPS99] Forti, G. L. and Paganoni, L. and Smìtal, J., Dynamics of homeomorphisms on minimal sets generated by triangular mappings, Bull. Austral. Math. Soc. 59 (1999), no. 1, 1-20.
  • [Fur67] Furstenberg, H., Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation, Math. Systems Theory 1 (1967), 1-49.
  • [Ged87] Gedeon, T., There are no chaotic mappings with residual scrambled sets, Bull. Austral. Math. Soc. 36 (1987), no. 3, 411-416.
  • [GH55] Gottschalk, W. H. and Hedlund, G. A., Topological dynamics, American Mathematical Society Colloquium Publications, Vol. 36, American Mathematical Society, Providence, R. I., 1955.
  • [Gla76] Glasner, S., Proximal flows, Lecture Notes in Mathematics, Vol. 517, Springer- Verlag, Berlin, 1976.
  • [Gla04] Glasner, E., Classifying dynamical systems by their recurrence properties, Topol. Methods Nonlinear Anal. 24 (2004), no. 1, 21-40.
  • [Guc79] Guckenheimer, J., Sensitive dependence to initial conditions for one-dimensional maps, Comm. Math. Phys. 70 (1979), no. 2, 133-160.
  • [GW93] Glasner, E. and Weiss, B., Sensitive dependence on initial conditions, Nonlinearity 6 (1993), no. 6, 1067-1075.
  • [GW06] -, On the interplay between measurable and topological dynamics, Handbook of dynamical systems. Vol. 1B, Elsevier B. V., Amsterdam, 2006, pp. 597-648.
  • [GY] Glasner, E. and Ye, X., Local entropy theory, Ergodic Theory Dynam. Systems, to appear.
  • [GZ98] Galias, Z. and Zgliczyński, P., Computer assisted proof of chaos in the Lorenz equations, Phys. D 115 (1998), no. 3-4, 165-188.
  • [Hén76] Hénon,M., A two-dimensional mapping with a strange attractor, Comm. Math. Phys. 50 (1976), no. 1, 69-77.
  • [Her81] Herman, M.-R., Construction d'un difféomorphisme minimal d'entropie topologique non nulle, Ergodic Theory Dynamical Systems 1 (1981), no. 1, 65-76.
  • [Hil04] Hilborn, R. C. , Sea gulls, butterflies, and grasshoppers: A brief history of the butterfly effect in nonlinear dynamics, American Journal of Physics 72 (2004), 425-427.
  • [HK] Harańczyk, G. and Kwietniak, D., When lower entropy implies stronger Devaney chaos, preprint, submitted.
  • [HY01] Huang,W. and Ye, X., Homeomorphisms with the whole compacta being scrambled sets, Ergodic Theory Dynam. Systems 21 (2001), no. 1, 77-91.
  • [HY02] -, Devaney's chaos or 2-scattering implies Li-Yorke's chaos, Topology Appl. 117 (2002), no. 3, 259-272.
  • [Iwa91] Iwanik, A., Independence and scrambled sets for chaotic mappings, The mathematical heritage of C. F. Gauss, World Sci. Publ., River Edge, NJ, 1991, pp. 372-378.
  • [JS86] Janková, K. and Smìtal, J., A characterization of chaos, Bull. Austral. Math. Soc. 34 (1986), no. 2, 283-292.
  • [Kat80] Katok, A., Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Inst. Hautes études Sci. Publ. Math., (1980), no. 51, 137-173.
  • [Kat98] Kato, H., On scrambled sets and a theorem of Kuratowski on independent sets, Proc. Amer. Math. Soc. 126 (1998), no. 7, 2151-2157.
  • [Kat07] Katok, A., Fifty years of entropy in dynamics: 1958-2007, J. Mod. Dyn. 1 (2007), no. 4, 545-596.
  • [KM05] Kwietniak, D. and Misiurewicz, M., Exact Devaney chaos and entropy, Qual. Theory Dyn. Syst. 6 (2005), no. 1, 169-179.
  • [KS89] Kuchta, M. and Smìtal, J., Two-point scrambled set implies chaos, European Conference on Iteration Theory (Caldes de Malavella, 1987), World Sci. Publ., Teaneck, NJ, 1989, pp. 427-430.
  • [KS97] Kolyada, S. and Snoha, L. , Some aspects of topological transitivity-a survey, Iteration theory (ECIT 94) (Opava), Grazer Math. Ber., vol. 334, Karl-Franzens-Univ. Graz, Graz, 1997, pp. 3-35.
  • [Kur73] Kuratowski, K., Applications of the Baire-category method to the problem of independent sets, Fund. Math. 81 (1973), no. 1, 65-72, Collection of articles dedicated to Andrzej Mostowski on the occasion of his sixtieth birthday, I.
  • [Kůr03] Kůrka, P., Topological and symbolic dynamics, Cours Spécialisés [Specialized Courses], vol. 11, Société Mathématique de France, Paris, 2003.
  • [KY01] Kennedy, J. and Yorke, J. A., Topological horseshoes, Trans. Amer. Math. Soc. 353 (2001), no. 6, 2513-2530.
  • [Li93] Li, S. ., ω-chaos and topological entropy, Trans. Amer. Math. Soc. 339 (1993), no. 1, 243-249.
  • [LM93] Llibre, J. and Misiurewicz, M., Horseshoes, entropy and periods for graph maps, Topology 32 (1993), no. 3, 649-664.
  • [LM95] Lind, D. and Marcus, B., An introduction to symbolic dynamics and coding, Cambridge University Press, Cambridge, 1995.
  • [Lor63] Lorenz, E. N., Deterministic nonperiodic flow, Journal of Atmospheric Sciences 20 (1963), 130-141.
  • [Lor00] Lorenz, E. N., The butterfly effect, The Chaos Avant-garde: Memories of the Early Days of Chaos Theory, World Scientific Series on Nonlinear Science, Series A, vol. 39, World Scientific, (2000), pp. 91-34.
  • [LY75] Li, T. Y. and Yorke, J. A., Period three implies chaos, Amer. Math. Monthly 82 (1975), no. 10, 985-992.
  • [LY77] Lasota, A. and Yorke, J. A., On the existence of invariant measures for transformations with strictly turbulent trajectories, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 25 (1977), no. 3, 233-238.
  • [LY00] Li, T. Y. and Yorke, J. A., Exploring Chaos on an Interval, The Chaos Avantgarde: Memories of the Early Days of Chaos Theory, World Scientific Series on Nonlinear Science, Series A, vol. 39, World Scientific, 2000, pp. 201-208.
  • [LZ73] Lau, K. and Zame, A., On weak mixing of cascades, Math. Systems Theory 6 (1972/73), 307-311.
  • [Mai97] Mai, J., Continuous maps with the whole space being a scrambled set, Chinese Sci. Bull. 42 (1997), no. 19, 1603-1606.
  • [Mai04] Mai, J., Devaney's chaos implies existence of s-scrambled sets, Proc. Amer. Math. Soc. 132 (2004), no. 9, 2761-2767 (electronic).
  • [Mar99] Martelli, M., Introduction to discrete dynamical systems and chaos, Wiley-Interscience Series in Discrete Mathematics and Optimization, Wiley-Interscience, New York, 1999.
  • [MDS98] Martelli, M. and Dang, M. and Seph, T., Defining chaos, Math. Mag. 71 (1998), no. 2, 112-122.
  • [MH38] Morse, M. and Hedlund, G. A., Symbolic Dynamics, Amer. J.Math. 60 (1938), no. 4, 815-866.
  • [MH40] -, Symbolic dynamics II. Sturmian trajectories, Amer. J. Math. 62 (1940), 1-42.
  • [Mis79] Misiurewicz, M., Horseshoes for mappings of the interval, Bull. Acad. Polon. Sci. Sér. Sci. Math. 27 (1979), no. 2, 167-169.
  • [Mis80] -, Horseshoes for continuous mappings of an interval, Dynamical systems (Bressanone, 1978), Liguori, Naples, 1980, pp. 125-135.
  • [Mis97] -, Remarks on Sharkovsky's theorem, Amer. Math. Monthly 104 (1997), no. 9, 846-847.
  • [Miy02] Miyazawa, M., Chaos and entropy for circle maps, Tokyo J. Math. 25 (2002), no. 2, 453-458.
  • [Miy04] -, Chaos and entropy for graph maps, Tokyo J. Math. 27 (2004), no. 1, 221-225.
  • [MM95a] Mischaikow, K. and Mrozek, M., Chaos in the Lorenz equations: a omputerassisted proof, Bull. Amer. Math. Soc. (N.S.) 32 (1995), no. 1, 66-72.
  • [MM95b] -, Isolating neighborhoods and chaos, Japan J. Indust. Appl. Math. 12 (1995), no. 2, 205-236.
  • [MM98] -, Chaos in the Lorenz equations: a computer assisted proof. II. Details, Math. Comp. 67 (1998), no. 223, 1023-1046.
  • [Moo07] Moothathu, T. K. Subrahmonian, Stronger forms of sensitivity for dynamical systems, Nonlinearity 20 (2007), no. 9, 2115-2126.
  • [MS80] Misiurewicz, M. and Szlenk, W., Entropy of piecewise monotone mappings, Studia Math. 67 (1980), no. 1, 45-63.
  • [Myc64] Mycielski, J., Independent sets in topological algebras, Fund. Math. 55 (1964), 139-147.
  • [Opr] Oprocha, P., Distributional chaos revisited, Trans. Amer. Math. Soc., to appear.
  • [Opr07] -, Specification properties and dense distributional chaos, Discrete Contin. Dyn. Syst. 17 (2007), no. 4, 821-833.
  • [Pet83] Petersen, K., Ergodic theory, Cambridge Studies in Advanced Mathematics, vol. 2, Cambridge University Press, Cambridge, 1983.
  • [Pik07] Pikuła, R., On some notions of chaos in dimension zero, Colloq. Math. 107 (2007), no. 2, 167-177.
  • [Pi 85] Piórek, J., On the generic chaos in dynamical systems, Univ. Iagel. ActaMath. 1985, no. 25, 293-298.
  • [Pi 91] -, On weakly mixing and generic chaos, Univ. Iagel. Acta Math. (1991), no. 28, 245-250.
  • [PJS02] Peitgen, H.-O. and Jィurgens, H. and Saupe, D., Granice chaosu: Fraktale, PWN, 2002.
  • [Ree81] Rees, M., A minimal positive entropy homeomorphism of the 2-torus, J. London Math. Soc. (2) 23 (1981), no. 3, 537-550.
  • [Rob95] Robinson, C., Dynamical systems, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1995, Stability, symbolic dynamics, and chaos.
  • [Rue] Ruette, S., Chaos for continuous interval maps, dostępny elektronicznie, http://www.math.u-psud.fr/ ruette/.
  • [Rue05a] -, Dense chaos for continuous interval maps, Nonlinearity 18 (2005), no. 4, 1691-1698.
  • [Rue05b] -, Transitive sensitive subsystems for interval maps, StudiaMath. 169 (2005), no. 1, 81-104.
  • [Šar64] Šarkovs'kiı, O. M., Co-existence of cycles of a continuous mapping of the line into itself, Ukrain. Mat. Z. 16 (1964), 61-71.
  • [Šar65] -, On cycles and structure of a continuous map, Ukrain. Mat. Z. 17 (1965), 104-111.
  • [Sch96] Schweizer, B., The genesis of the notion of distributional chaos, Rend. Sem. Mat. Fis. Milano 66 (1996), 159-167 (1998).
  • [Sil92] Silverman, S., On maps with dense orbits and the definition of chaos, Rocky Mountain J. Math. 22 (1992), no. 1, 353-375.
  • [Smì83] Smìtal, J., A chaotic function with some extremal properties, Proc. Amer. Math. Soc. 87 (1983), no. 1, 54-56.
  • [Smì86] -, Chaotic functions with zero topological entropy, Trans. Amer. Math. Soc. 297 (1986), no. 1, 269-282.
  • [Sno91] Snoha, L., Generic chaos, European Conference on Iteration Theory (Batschuns, 1989), World Sci. Publ., River Edge, NJ, 1991, pp. 347-351.
  • [SS83] Schweizer, B. and Sklar, A., Probabilistic metric spaces, North-Holland Series in Probability and Applied Mathematics, North-Holland PublishingCo., New York, 1983.
  • [SS94] Schweizer, B. and Smìtal, J., Measures of chaos and a spectral decomposition of dynamical systems on the interval, Trans. Amer. Math. Soc. 344 (1994), no. 2, 737-754.
  • [SS00] Sklar, A. and Smìtal, J., Distributional chaos on compact metric spaces via specification properties, J. Math. Anal. Appl. 241 (2000), no. 2, 181-188.
  • [SŠ04] Smìtal, J. and Štefànkovà, M., Distributional chaos for triangular maps, Chaos Solitons Fractals 21 (2004), no. 5, 1125-1128.
  • [SSS01] Schweizer, B. and Sklar, A. and Smìtal, J., Distributional (and other) chaos and its measurement, Real Anal. Exchange 26 (2000/01), no. 2, 495-524.
  • [Ste01] Stewart, I., Czy Bóg gra w kości? Nowa matematyka chaosu, PWN, 2001.
  • [SWZ05] Srzednicki, R. and Wójcik, K. and Zgliczyński, P., Fixed point results based on the Ważewski method, Handbook of topological fixed point theory, Springer, Dordrecht, 2005, pp. 905-943.
  • [Wal82] Walters, P., An introduction to ergodic theory, Graduate Texts in Mathematics, vol. 79, Springer-Verlag, New York, 1982.
  • [Wei71] Weiss, B., Topological transitivity and ergodic measures, Math. Systems Theory 5 (1971), 71-75.
  • [Wig92] Wiggins, S., Chaotic transport in dynamical systems, Interdisciplinary Applied Mathematics, vol. 2, Springer-Verlag, New York, 1992.
  • [WL99] Wang, L. and Liao, G., Regular shift invariant sets and Schweizer-Smìtal chaos, Northeast. Math. J. 15 (1999), no. 2, 127-129.
  • [Xie96] Xie, H., Grammatical complexity and one-dimensional dynamical systems, Directions in Chaos, vol. 6, World Scientific PublishingCo. Inc., River Edge, NJ, 1996.
  • [XY91] Xiong, J. C. and Yang, Z. G., Chaos caused by a topologically mixing map, Dynamical systems and related topics (Nagoya, 1990), Adv. Ser. Dynam. Systems, vol. 9, World Sci. Publ., River Edge, NJ, 1991, pp. 550-572.
  • [Zgl96] Zgliczyński, P., Fixed point index for iterations of maps, topological horseshoe and chaos, Topol. Methods Nonlinear Anal. 8 (1996), no. 1, 169-177.
  • [Zgl97] -, Computer assisted proof of chaos in the Rィossler equations and in the Hénon map, Nonlinearity 10 (1997), no. 1, 243-252.
  • [Zgl99] -, Multidimensional perturbations of one-dimensional maps and stability of Šarkovskiı ordering, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 9 1999, no. 9, 1867-1876, Discrete dynamical systems.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0001-0001
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.